ACTIN AND MYOSIN AND CELL MOVEMENT

Authors: Thomas D. Pollard

> Department of Anatomy Harvard Medical School

Boston, Mass.

Robert R. Weihing

Worcester Foundation for Experimental Biology

Shrewsbury, Mass.

Referee: M. R. Adelman

Department of Anatomy **Duke University Medical Center** Durham, North Carolina

INTRODUCTION

Movement of living cells is one of the fundamental properties of life. Various biological movements have now been related to four general mechanisms. Bacteria are propelled by the mysterious beating of their simple flagella, which are composed of a single type of protein lacking any enzymatic activity.1 Certain peritrichous ciliates possess a contractile stalk containing a rubberlike organelle, the spasmoneme, which contracts when exposed to Ca++.2 The beat of cilia and sperm tails (and perhaps some cytoplasmic movements as well) is apparently due to the interaction of microtubules and the ATPase dynein.3,3 In muscle, contractile force is generated by the sliding interaction of actin and myosin filaments, with the energy provided by the hydrolysis of ATP.4

Until recently, little or nothing was known about the molecular mechanism of a diverse group of biological movements, including amoeboid locomotion, cytoplasmic streaming, cytokinesis, and morphogenetic movements. The studies reviewed here establish that many motile cells which exhibit such movements, including protozoa

and vertebrate cells, which lack the highly organized contractile apparatus found in muscle, possess the contractile proteins actin and myosin. Therefore, it is likely that, as in muscle, the interaction of force transmitting actin filaments with the energy transducing enzyme myosin is responsible for generating the force for movement in these cells.

The contractile proteins from cells other than muscle are sometimes referred to as "nonmuscle" actin and myosin. Because this seems somewhat awkward, and because we want to differentiate these proteins from their myofibrillar counterparts, we have chosen to call them cytoplasmic actin and myosin, as first suggested by Bray.5 The cytoplasmic actins and myosins will be specifically named by using the name of the cell of origin, for example, Acanthamoeba actin or Physarum myosin. This practice seems preferable to coining new names, such as "thrombosthenin-M" for platelet myosin or "neurin" for brain actin.

This review is a comprehensive critical evaluation of biochemical studies on cytoplasmic actin and myosin. Selected physiological and cytological studies relating these contractile proteins to cell motility are considered in less detail. Thorough

coverage of early descriptive work on cell motility is found in the book Primitive Motile Systems in Cell Biology, 5 a and more recent studies are found in the report of the symposium Motile Systems of Cells. 5 b Komnick, Stockem, and Wohlfarth-Botterman^{5 c} have recently written an extensive review stressing cytological studies on motility of amoebae and myxomycetes, while two brief reviews by Pollard^{5d} and Huxley^{5e} cover some of the recent biochemical studies on cell motility.

HISTORICAL BACKGROUND

The pioneering work on the biochemical basis of cytoplasmic movement was reported by Loewy in 1952.6 He investigated an extract from the plasmodium of the myxomycete Physarum polycephalum in the hope that it "might give insight into the mechanism by which unspecialized or primitive tissue is able to convert chemical energy into mechanical work." Quite remarkably, the extract shared several important properties with muscle actomyosin, including the effect of ATP upon its viscosity and the ability to hydrolyze ATP. This suggested that there might be a basic biochemical similarity between the streaming in Physarum and the contraction of muscle. The boldness of these experiments is emphasized when one recalls that muscle actin and myosin had only recently been separated and identified as the contractile proteins of muscle⁷ and that only scant information was available on the ultrastructure or chemistry of cytoplasm.

Several years later, Ts'o and co-workers⁸ studied Physarum actomyosin with the most sophisticated available techniques, including electron microscopy and analytical ultracentrifugation, but they were unable to resolve the components of the mixture. Nakajima also examined a crude preparation of Physarum actomyosin and concluded that it had many properties in common with muscle actomyosin.82 In 1959, Bettex-Galland and Luscher⁹ extended these studies to a nonmuscle vertebrate cell, human platelets, from which they extracted a crude actomyosin, which they called thrombosthenin.

At about the same time, Hoffman-Berling (reviewed by Arronet¹⁰) carried out a number of experiments on contractile cell models. Inspired by reports that glycerinated muscle and isolated myofibrils contracted when treated with Mg⁺⁺ and

ATP, he extracted a number of different cells with glycerol and found that feeble contractions could be induced by exposure to Mg** and ATP.

Consequently, by 1960 it was known that actomyosin was not confined to muscle but also could be extracted from motile vertebrate and protozoan cells, although there seems to have been limited interest in and acceptance of this work. The skepticism resulted, at least in part, from the heterogeneous nature of the protein mixtures that were used in these experiments and the difficulty in resolving the active components with available analytical and preparative techniques. Even the separation of thrombosthenin into two fractions having the properties of actin and myosin¹¹ failed to stimulate more widespread investigation.

The turning point in this field was the purification of actin from Physarum by Hatano and Oosawa in 1966.12,13 The Physarum actin had physical, chemical and biological properties which established its close relation to muscle actin. Shortly thereafter, both Hatano and Tazawa¹⁴ and Adelman and Taylor^{15,16} developed methods for purifying Physarum myosin. Building on these pivotal investigations, recent biochemical work has moved forward quickly, aided by modern analytical and preparative methods such as gel electrophoresis and column chromatography on ion exchangers and gel filtration media.

The second major stimulus for further investigation was the development by Ishikawa, Bischoff, and Holtzer¹⁷ of an ingenious technique for identifying actin filaments in situ. This procedure takes advantage of Huxley's observation that a soluble fragment of muscle myosin called heavy meromyosin will bind to actin filaments, forming distinctive complexes with the shape of periodically repeating arrowheads. 18 Ishikawa found that after glycerol extraction heavy meromyosin could enter cells and bind to the actin filaments, forming arrowhead complexes which he visualized using the electron microscope. This procedure has now been used to identify and localize actin filaments in a variety of cells and is helping to relate the biochemical findings to events taking place on the cellular level.

MECHANISM OF MUSCLE CONTRACTION

As it is now apparent that many cells share common contractile proteins with muscle, it seems

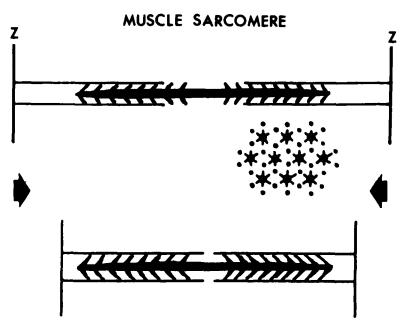


FIGURE 1. Line drawings of a striated muscle sarcomere. From the top, longitudinal section of an extended sarcomere, cross section through a region of thick and thin filament overlap, longitudinal section of a contracted sarcomere.

helpful to mention here for orientation some of the most important facts known about muscle contraction. It is these facts which have guided (and also prejudiced) investigations on the contractile molecules in other cells. More extensive accounts of the curent status of muscle research are found in the Cold Spring Harbor Symposium on Quantitative Biology, Volume 3719 and in several recent reviews. 4,20-23

Striated muscle consists of two types of interdigitating filaments, which in cross section are seen to be arranged in a double hexagonal array (Figure 1). The basic unit of the contractile apparatus is called a sarcomere and is repeated many times in series and in parallel in each muscle cell, accounting for the microscopic striations seen in skeletal and cardiac muscle cells. The thin filaments are polymers of the globular protein actin, associated with the control proteins troponin and tropomyosin. The thick filaments consist primarily of a bipolar assembly of the fibrous protein myosin. The bipolarity of the thick filament and the opposite polarity of the actin filaments at each end of the sarcomere make the whole sarcomere bipolar. 18

Muscle contraction is caused by the synchronous shortening of its sarcomeres. As the sarcomeres shorten, the thin filaments slide past the thick filaments, pulling the ends of the sarcomere toward the middle.24 The force for this sliding movement is generated by the cyclic interaction of myosin cross bridges with the actin filaments.4,25 Each cross bridge has an actin binding site and ATPase activity and is free to swing out from the backbone of the thick filament to contact the actin filament.26

While the details of the force generating mechanism are still under investigation, it has been established that the energy for muscle contraction comes from the myosin-catalyzed hydrolysis of the terminal phosphate of ATP.²⁷ In resting muscle the myosin ATPase activity is very low, but during contraction the cyclic interaction of myosin with actin stimulates the myosin ATPase, providing the energy for movement.28

The interaction of myosin and actin (and hence muscle contraction) is regulated by a reversible inhibition of actin-myosin binding. This regulatory block is modulated by the concentration of free Ca in the muscle cytoplasm and arises in two ways: (1) In the muscles of higher organisms, the regulatory system is located on the thin, actincontaining filaments and consists of a complex of four proteins called troponin-tropomyosin. 29,30

Tropomyosin is an alpha-helical coiled-coil³¹ which lies along the length of the actin filament.32,33 Troponin consists of three protein subunits called troponin-I (for inhibitory component), troponin-C (for Ca⁺⁺ binding component), and troponin-T (for tropomyosin binding component).³⁰ The troponin complex binds to tropomyosin and is situated at intervals of about 40 nm along the actin filament. 29,52-33 Together, troponin-tropomyosin blocks actin-myosin binding in the absence of Ca^{++ 3 3 a} (2) In the muscles of molluscs and some other invertebrates, the regulatory system is incorporated into the myosin molecule 34,35 and depends on the presence of a low molecular weight polypeptide attached to the myosin.36 The molluscan thin filaments contain actin and tropomyosin but no troponin.35

The outcome is the same in both cases: In resting muscle the Ca^{++} concentration is 10^{-7} M or less, and the regulatory systems prevent actinmyosin interaction. Muscle contraction is activated by a complicated sequence of events, beginning with the arrival of a nerve impulse at the muscle and ending with the release of Ca++ into the cytoplasm³⁶² from the membranes of the sarcoplasmic reticulum. This causes the Catt concentration in the muscle cytoplasm to increase to about 10^{-5} M. The Ca⁺⁺ then binds to the regulatory component, either the troponin or the myosin, inhibition of actin-myosin binding is reversed, and contraction ensues.29

ACTIN

Numerous studies show clearly that actin is a major protein constituent of various cells, which lack a highly organized contractile apparatus, and closely resembles actin from muscle. As is developed in more detail below, these cytoplasmic actins share with muscle actin the ability to form double helical filaments from globular monomers, to form periodic arrowhead-shaped complexes with heavy meromyosin, to activate the Mg ATPase of myosin or heavy meromyosin, and to interact with the regulatory proteins troponintropomyosin. In view of these similarities, it is not surprising, therefore, that the amino acid composition and peptide maps of several of these actins, and the composition of certain peptides isolated from one of these actins, closely resemble the corresponding amino acid compositions for muscle actin.

Isolation

Cytoplasmic actins are generally prepared using a small repertory of procedures which take advantage of properties specific for actin.

In some cases cells are initially dried with acetone, which serves to denature myosin and some other, but not all, unwanted proteins. 37-39 The actin is then extracted from the acetone powder with a dilute solution of ATP and a reducing agent such as cysteine or 2-mercaptoethanol. 13,39 Yang and Perdue investigated the optimal extraction period and found that the purity of the actin extracted decreased after an initial 10 min extraction. 39 Other workers have extracted for various apparently arbitrary lengths of time. In favorable cases (actin from glycerinated fibroblasts³⁹ and brush borders³⁸), homogeneous actin (judging by gel electrophoresis) can be isolated from extracts of acetone powders by simply carrying out one additional step consisting of a single cycle of polymerization and depoly-The fibroblast actin³⁹ was merization. contaminated by a protein with the electrophoretic mobility of tropomyosin. This contaminant was removed by collecting the actin polymers formed in the presence of 0.6 M KCl, which is expected to dissociate contaminating tropomyosin from actin filaments.40 In brush border^{3 8} the concentration of actin is so high that contamination with other proteins may be a minor problem.

In other cases cells are initially extracted with concentrated solutions of KCl. Using Dictyostelium, Woolley found that actin was extracted after short periods but that actomyosin was extracted only after longer periods.43 In other cases it is not known whether varying the period of extraction leads to preferential extraction of one or another protein. KCl extracts of cells have been further fractionated in several different ways. In the case of Physarum, 12,13 Acanthamoeba, 44 and Dictyostelium, 43 muscle myosin was added to the extract and the hybrid actomyosin precipitated in 0.05 M KCl. The precipitate was then dried with acetone, which denatures the myosin, and actin was extracted from the acetone powders using dilute buffers containing ATP and a reducing agent. Final purification was achieved by various combinations of polymerization and depolymerization, gel filtration, ammonium sulfate fractionation, and isoelectric precipitation. Only in the case of Acanthamoeba actin has the value of

each step been demonstrated by showing that each step led to actin of higher content of N^{T} -methylhistidine and higher reduced viscosity.44

When actin is isolated as a hybrid actomyosin, it is necessary to show that the actin isolated is not a contaminant from the added myosin. This has been done by showing that the amount of protein isolated from the muscle myosin by an identical purification procedure could not account for the yield of cytoplasmic actin actually attained,43,44 or by demonstrating that the showed neither a viscosity muscle myosin drop^{12,13,43,44} nor superprecipitation^{12,13} in the presence of ATP, or by showing that the actin isolated from cells labeled with a radioactive amino acid has the same specific activity as the total cell protein.44

In the case of KCl extracts of platelets⁴⁵ and brain, 49,50 contractile proteins which behave like typical actomyosin are present in very high concentration, making it possible to isolate actomyosin directly. Platelet actin, which appears homogeneous by gel electrophoresis, has been isolated from platelet actomyosin46-48 using slightly different combinations of the procedures discussed above. Actin is isolated from brain actomyosin by gel filtration on Sephadex® G-200 or by sucrose density gradient centrifugation in the presence of 0.6 M KI and 1 mM ATP, which separate the actin and myosin. The final actin preparation appears homogeneous on gel electrophoresis in the presence of urea (except for some material of unknown composition which fails to enter the gel).

Adelman and Taylor 15,16 purified Physarum actin from a high speed tris-maleate-pyrophosphate extract using ammonium sulfate fractionation and gel filtration in a dilute buffer.

All the cytoplasmic actins which have been examined appear homogeneous by polyacrylamide gel electrophoresis, and several also appear homogeneous by sedimentation velocity and equilibrium ultracentrifugation. However, all cytoplasmic actins contain somewhat less than the theoretical (1 mol/mol) amounts of bound nucleotide, and most contain less N^{τ} -methylhistidine (Table 1), raising the possibility that they are not yet completely pure. The data on brain actin present some puzzling inconsistencies. The apparent homogeneity by urea gel electrophoresis is in accord with one value for N^{τ} -methylhistidine content (0.9 mol/45,000) but disagrees with a

second value for N^{T} -methylhistidine content (0.3 mol/45,000) and the slow continued release of phosphate after polymerization (discussed below).

Physical-chemical Properties

All the physical-chemical parameters of cytoplasmic actins which have been investigated have been found to be almost identical with the same parameters for muscle actin. These include the monomer molecular weight, the amino acid composition of the protein and certain of its peptides, the content of bound nucleotide and divalent cation, and the ability to polymerize.

Molecular Weight

Most cytoplasmic actins have exactly the same subunit molecular weight as muscle actin as determined by gel electrophoresis in the detergent sodium dodecyl sulfate (Table 1), but the absolute value of the molecular weight is in doubt because the molecular weight of muscle actin is subject to some uncertainty. Muscle actin molecular weights in the range 43,000 to 48,000 daltons have been obtained by analytical ultracentrifugation, 60 by gel filtration, and from the content of nucleotide 54,60 and of NT-methylhistidine, 55-58 but the recently complete amino acid sequence of muscle actin gives a calculated molecular weight of 42,000 daltons.61 Because of this inconsistency, we have arbitrarily used a molecular weight of 45,000 daltons for all of the actins in order to have a common basis for the comparative data presented in the tables.

Actins must consist of a single polypeptide because determinations of the native molecular weight of actin from muscle 54,60 and platelets 62 are approximately the same as the molecular weights in denaturing solvents.

Amino Acid Composition

Amino acid compositions are now available for actin from four different cells (three protozoa and sea urchin eggs) and human platelets (Table 2). The compositions of these actins are remarkably similar to one another and to muscle actin. No amino acid in the cytoplasmic actins differs from the corresponding residue in muscle actin by as many as ten residues, and only four differences of ten or more residues (aspartic acid, methionine, isoleucine, and leucine) are found among the cytoplasmic actins. Two of these latter differences may be caused by artifacts of hydrolysis. The

TABLE 1 Physical Chemical Properties of Various Actins

			ced viscosity ymers (dl/g)	Bound nucleotide	Bound divalent cation	N ^τ -Methyl- histidine content
	Monomer molecular		0.1 M KCl +	4	146,000	
Source of actin	weight (daltons)	0.1 M KCl	1-2 mM MgCl ₂	(moies	s/45,000 g p	
Acanthamoeba 4 4,5 1	45,000	3.9				0.81
Brain (cat, cow or rat) ^{49,50} Brush border				Ú.69		0.3 or 0.9
(chicken intestine) ^{3 8}	46,000					
Dictyostelium ^{4 3}	48,000	3.5	2.7			0.86
Egg (sea urchin) ^{37,748}	10,000	2.1				
Des (sea aronni)		0.8	0.27			
		1.8	0.1 (MgCl ₂ only)			
Fibroblast						
(chick embryo)39	45,500					
Physarum	57,000 ¹³			0.79		
	•	5.652	0.56			
	37,000-44,000 ^{15,16}	3.6	3.4	0.71		
	45,000 ^{5 5 a}				1 Ca ^{++ 5 3}	
Platelet						
(cow) ⁴⁷	45,000					
(human)	44,000		12	162		1
(pig) ^{4 7}	45,000					
Rabbit striated muscle	45,000 ^{5 4}		11.9	1.0	1.1	1.0555,56-58
•		6.75 9	7.0			

Published molecular weights are cited except for actin from Acanthamoeba and cow and pig platelets, which are assigned the molecular weight 45,000 daltons because they coelectrophorese with rabbit actin. The reduced viscosity of Acanthamoeba actin was presented in Table 1 of Reference 44; the other reduced viscosities were calculated from the highest measurements of viscosity shown in the respective references. The data for content of nucleotide and N^{τ} -methylhistidine were normalized to the molecular weight 45,000 daltons using data given in the respective references.

methionine content of sea urchin egg actin and the isoleucine content of Physarum actin are unusually low, but it is not clear from the published reports whether the precautions used in the case of the Acanthamoeba actin446 were taken to ensure complete recovery of these amino acids. Hence, these values may be spuriously low. Therefore, it is possible that the content of only two amino acids differs by as many as ten residues among the various cytoplasmic actins. In contrast, the amino acid composition of the microtubule subunit, tubulin, varies considerably from species to species.3

The unusual amino acid N^{7} -methylhistidine has been identified in four cytoplasmic actins (Tables 1 and 2). Muscle and human platelet actins contain 1 mol, Acanthamoeba and Dictyostelium actins contain about 0.8 mol, and brain actin contains

about 0.3 or 0.9 mol/mol of protein. All these actins appear homogeneous by gel electrophoresis, but, because some contain less than 1 mol of N^{7} -methylhistidine/mol of protein, it is possible that they are incompletely methylated. However, the possibility that they are not completely purified cannot be ruled out. Because N^{7} -methylhistidine is a component of these actins, we expect that it will be identified in other cytoplasmic actins.

About 1 mol of the unusual amino acid N^{ϵ} -dimethyllysine/mol of protein, together with smaller amounts of N^{ϵ} -monomethyllysine and traces of N^{ϵ} -trimethyllysine, has been identified in actin from Acanthamoeba, 51,63 These amino acids are not present in actin from Dictyostelium43 or rabbit muscle,64 but their identification has not been attempted in other actins.

TABLE 2 Amino Acid Composition of Various Actins

Residue	Acanthamoeba ^{4 4}	Dictyostelium ^{4 3} (mole	Physarum ¹³ es/45,000 g prote		Human ^{6 2} platelet	Rabbit muscle ^{5 7}
_						
Lys	20.7	22.0	18.4	24.0	20.0	21.0
Me-Lys	0.27	0	?	?	?	0
(Me) ₂ -Lys	0.89	0	?	? ?	?	0
$(Me)_3$ -Lys	trace	0	?		?	0
His	7.2	7.7	7.6	7.5	9.5	8.1
N^{τ} -Me-His	0.81	0.86	?	?	0.94	0.97
Arg	19.7	19.5	18.0	22.3	18.9	20.7
Asp	33.9	41.0	37.8	48.5	35.6	38.6
Thr	29.3	29.2	27.4	26.0	27.6	27.9
Ser	25.3	26.1	25.2	29.0	26.9	23.3
Glu	44.9	46.4	51.3	49.5	49.6	44.5
Pro	21.5	17.9	27.4	18.1	21.6	20.9
Gly	36.4	33.0	33.3	30.8	34.7	31.5
Ala	33.9	34.5	30.6	31.8	35.0	32.3
1/2Cys	5.6	?	5.0	3.7	4.2	5.3
Val	22.9	23.1	14.4	21.2	17.6	21.8
Met	16.8	15.3	12.6	5.0	10.4	16.9
Ile	28.7	28.2	15.3	22.3	24.4	28.6
Leu	37.4	28.4	27.4	30.8	32.3	29.2
Туг	15.6	14.8	14.4	17.1	12.6	17.0
Phe	13.4	14.4	13.0	17.1	14.3	13.7
Trp	5.7	?	?	?	4.8	4.3

Isolated Peptides

Amino acid compositions are available for three cyanogen bromide fragments of Acanthamoeba actin.51 These include a peptide which contains N^{τ} -methylhistidine (peptide CB-10), a peptide which contains N^{ϵ} -methyllysine (peptide CB-16), and a peptide which is distinguished by its high content of glutamic acid and the absence of proline (peptide CB-17). The compositions of these peptides resemble the compositions of similar peptides from rabbit muscle actin and bovine cardiac actin.51,65 While the location of these peptides in the polypeptide chain of Acanthamoeba actin has not been established, it is likely from the similarities of amino acid composition and the other close resemblances between actin from Acanthamoeba and rabbit muscle that the amoeba and muscle peptides are located in the same region of the respective parent molecules and also that the amino acid sequences are similar.

Fragments of actin from human platelets and rabbit muscle prepared by cyanogen bromide

cleavage have been compared by disc gel electrophoresis. Several bands with identical mobilities as well as bands with different mobilities were observed.62 The relation of these bands to the well-characterized cyanogen bromide peptides from Acanthamoeba and rabbit muscle actin might be clarified by amino acid analysis.

Tryptic peptide maps have been used to identify actin in several cells (described below in the section on Methods of Identifying Actin). The results show that actin from muscle and several nonmuscle tissues of one animal all have similar peptide maps, suggesting that there may be a common gene for all actins.5

Bound Nucleotide

Actin from muscle binds 1 mol of ATP/mol of monomer. 54,60 Bound nucleotide has been identified in actin from Physarum¹³ and brain⁴⁹ after exposure to solutions containing ATP and is probably present in human platelet actin because phosphate is released (presumably from bound

ATP) during polymerization of this actin.62 Because actin monomers undergo nucleotide exchange,67 in order to identify which nucleotide is present in vivo, it will be necessary to isolate the actin in the absence of added nucleotide and to identify the nucleotide present in the actin.

In those cases where data were presented, the cytoplasmic actins bound less than 1 mol of nucleotide/45,000 of protein (Table 1). Because purified muscle actin binds 1 mol of ATP/mol of monomer, it is possible that the cytoplasmic actins as isolated are incompletely purified or partially denatured.

Bound Divalent Cation

Actin from muscle can bind 1 mol of divalent cation (Ca⁺⁺ or Mg⁺⁺)/mol of monomer. 54,68,69 While the binding constant for Ca** is about four times that for Mg⁺⁺, 70 probably only Mg⁺⁺ is bound in vivo because of the vast excess of Mg⁺⁺. Among cytoplasmic actins, only Physarum actin has been investigated for the presence of divalent cation. About 1 mol of Ca++/mol of monomer was identified, and the bound Ca++ could be exchanged for Mg⁺⁺. 53 Because this preparation of Physarum actin was isolated in the absence of added divalent cation, Ca⁺⁺ is probably the cation which is bound in vivo.

Stability

Removal of bound ATP^{71,72} or divalent cation^{68,69} or blockage of certain sensitive sulfhydryl groups 79 causes muscle actin to lose polymerizability. The ability of these factors to stabilize cytoplasmic actins has not been investigated.

Polymerization

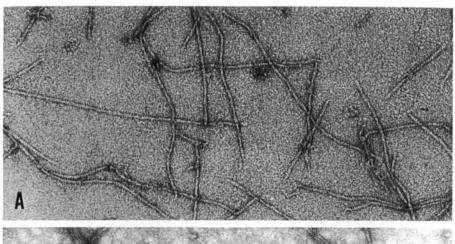
Muscle and cytoplasmic actins share the ability to polymerize into filaments. This is a key functional property for actin because only actin organized as filaments can transmit tension, and only actin filaments efficiently activate the myosin ATPase during the conversion of the chemical energy of ATP into mechanical work. It is important, therefore, to study the properties of polymerization in vitro in an attempt to identify factors which influence polymerization in vivo.

Polymerization of actin into ordinary actin filaments (usually referred to as "F-actin") is induced in vitro by adding KCl to a final concentration of 0.1 M or MgCl₂ to a final concentration of 1 to 2 mM.71 In the case of actin from Physarum, 73 and possibly from Dictyostelium 43 and sea urchin eggs, 37,74 a however, the polymers formed in the presence of Mg++ have different properties from the polymers formed in the presence of KCl alone. This so-called "Mgpolymer" is discussed in more detail below, after the properties of ordinary actin filaments have been discussed.

Polymerization of actin has been studied in four ways, which are discussed below: analytical ultracentrifugation, flow birefringence, electron microscopy, and viscometry.

Analytical Ultracentrifugation

Upon polymerization, the 3S monomer of actin from Acanthamoeba, 44 Dictyostelium, 43 Physarum, 13 and sea urchin eggs 37,74,74 a is converted to a component of higher sedimentation coefficient. The faster sedimenting ponent generally shows self-sharpening of the sedimenting boundary, indicating the formation of a highly asymmetrical species. This behavior is consistent with filament formation. Most workers note that less than 100% of the 3S component is converted to the high S component, but there have been no quantitative studies of the factors involved with this incomplete polymerization.


Flow Birefringence

Simple observation of the development of flow birefringence by stirring a solution between crossed polaroids can be used as a rough and ready indication of the progress of polymerization during preparative procedures. Quantitative measurements of flow birefringence can be used to determine the average length of actin filaments in solution, but these measurements are infrequently made. Using this technique, Hatano and coworkers found that the average length of Physarum actin filaments polymerized in KCl was 2.2 μ m, a value in good agreement with direct measurements by electron microscopy. 73

Electron Microscopy

Actin filaments can be visualized directly by electron microscopy of negatively stained specimens (Figure 2), and all of the purified cytoplasmic actins have been studied in this way. Most cytoplasmic actin filaments have been reported to be about 5 to 8 nm wide with a mean around 6 nm (Table 3). The variation in these measurements

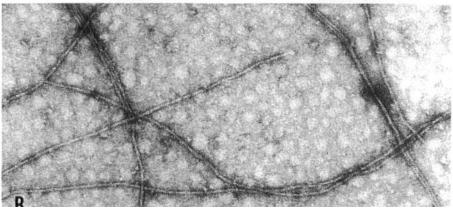


FIGURE 2. Actin filaments negatively stained with uranyl acetate. A. Physarum actin filaments in *Physarum* actomyosin treated with Mg⁺⁺ ATP. (Micrograph by V. T. Nachmias.) B. Acanthamoeba actin filaments. Magnification x 94,000.

TABLE 3 Dimensions of Bare and Decorated Actin Filaments

Source of actin	Width of filament (nm)	Half pitch of double helix (nm)	Spacing of heavy meromyosin complexes (nm)
Acanthamoeba ^{7 §}	5.8 ± 1.1 (± 2 S.D.)	37	37
Dictyostelium ⁴³	6.0-7.5	35 ± 1.5	35
Egg (sea urchin) ^{74,748}	6.0-8.0		
Fibroblast ³	8.0 ± 0.5		36.6 ± 4.3
(chick embryo)			
Leukocyte			
(guinea pig) ⁷⁶			36
(horse) ^{7 7-7 8 a}	§ 8.0	35 ^{78 a}	
Platelet100a	7.0		
human	6.0		
Physarum	7.514	35-42	
	5.0-6.0 ^{8 o}		35-36
	5.0-8.016		
	6.0 ^{7 3}	29	
Rabbit muscle	6.0-7.018	35-37	35-37
	8.0	35	

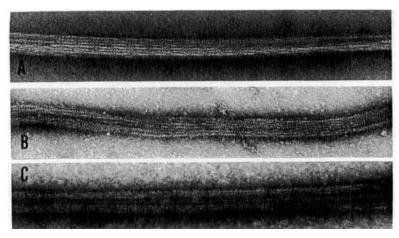


FIGURE 3. Actin paracrystals formed in the presence of 25 or 50 mM MgCl. and negatively stained with uranyl acetate. A. Muscle actin. B. Dictyostelium actin. C. Pig platelet actin. (Micrographs by J. A. Spudich.) Magnification x 137,000.

probably reflects the difficulty in measuring the width of the negatively stained filaments rather than differences in the actual width of the different actin filaments.

In favorable cases the substructure of these negatively stained actin filaments can be resolved. The best micrographs indicate that, like muscle actin filaments, the cytoplasmic actin filaments consist of 5 nm globular monomers arranged in a double helix with a half pitch of about 36 to 38 nm (Table 3).

The pitch of the actin helix can be measured more easily from the periodicity of actin paracrystals formed by the side to side association of actin filaments in high concentrations of Mg⁺⁺⁸² (Figure 3). The helices of adjacent actin filaments are in register, thereby reinforcing their periodicity. These paracrystals have been made with actin from Physarum, 83 various types of platelets, 47 and Dictyostelium (Figure 3).

The half pitch of the actin helix can be measured most simply from the periodicity of the arrowhead-shaped complexes formed by "decorating" actin filaments with heavy meromyosin¹⁸ (Figure 4). The heavy meromyosin binds to the actin molecules in a specific way, giving the arrowhead shape and amplifying the periodicity of the underlying actin filament.84 Various muscle actins and five purified cytoplasmic actins have been decorated with heavy meromyosin or subfragment-1 from rabbit myosin,

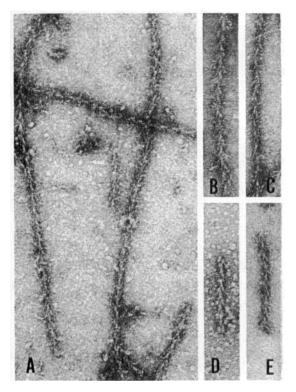


FIGURE 4. Decorated actin filaments from various sources negatively stained with uranyl acetate. A. Muscle actin with muscle heavy meromyosin. B. Amoeba proteus thin filament with muscle heavy meromyosin. C. Purified Acanthamoeba actin with muscle heavy meromyosin. D. Human platelet actin with platelet myosin head. E. Guinea pig granulocyte actin and myosin. Magnification x 86,000.

and there is close agreement that the resulting arrowheads have a periodicity of about 36 nm (Table 3; Figure 4).

Viscometry

The course of polymerization and the effects of various treatments on the ability of actin to polymerize can be most conveniently followed in vitro by measurements of viscosity. The measurement is easy and rapid, and the reduced viscosity of polymers formed from purified actin is well defined for a given set of conditions.

The reduced viscosity reported for purified cytoplasmic actins (Table 1) polymerized with 0.1 M KCl is generally somewhat lower than for muscle actin. The reason for this is not known at present because careful comparative studies using actin polymers shown to be free of denatured actin (e.g., by sedimentation of polymerized actin) or contaminating protein have not been carried out. If denatured actin or protein contaminants were present in a solution of actin polymers, they would lower the reduced viscosity by an amount directly related to their concentration. Alternatively, it is possible that the average polymer length and, therefore, the viscosity of cytoplasmic actins are lower than for actin from muscle.

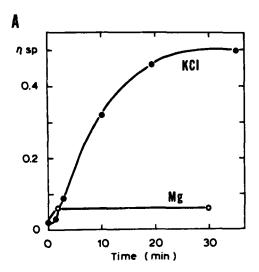
Hydrolysis of Bound Nucleotide

Upon polymerization of muscle actin, the bound ATP is rapidly and stoichiometrically converted to bound ADP and free phosphate. 71,85 Completely polymerized muscle actin does not carry out further hydrolysis of ATP, although ATP hydrolysis can continue under certain abnormal conditions such as addition of insufficient polymerizing cation, 86 sonication, 87 pressure elevation,88 or temperature elevation.89

Actin from Physarum, 73 brain, 49 and human platelets^{6 2} releases phosphate from bound ATP upon polymerization. During polymerization of Physarum actin in KCl, both the viscosity increase and the liberation of phosphate are complete in 15 min, showing that the phosphate release is a consequence of polymerization. The amount of phosphate liberated by actin from Physarum and human platelets is close to the theoretical amount (1 mol/45,000 g protein).

In the case of brain actin, 49 0.79 mol of phosphate/45,000 g protein was released after 16 hr. After 1 hr about half this amount was released. Because the rate of phosphate liberation and

polymerization were not compared, we do not know if polymerization and phosphate release occurred in parallel. If polymerization required 16 hr for completion, this would be very slow in comparison with muscle actin, which would have been completely polymerized in 1 hr under the same conditions. If the amount polymerized in 1 hr is equivalent to the concentration of native brain actin, then the additional phosphate released after 16 hr may have been produced by the action of a contaminating ATPase (possibly brain myosin), or brain actin may form Mg-polymer, which would be expected to continue to hydrolyze ATP (see below). These possibilities cannot be distinguished without further experiments.


Mg-polymer

Both the Hatano¹³ preparation of actin from Physarum and rabbit muscle actin mixed with the minor muscle protein beta-actinin⁵⁹ form an unusual polymer termed "Mg-polymer." This form of actin was discovered by Hatano and coworkers,73 who observed that the viscosity of Physarum actin polymerized with 0.1 to 2.0 mM MgCl₂ was substantially lower than the viscosity of the same concentration of Physarum actin polymerized with KCl (Figure 5a). Magnesium has a similar effect on the polymerization of actin from Dictyostelium43 and sea urchin eggs,74a but Physarum actin prepared by the method of Adelman and Taylor¹⁶ and Acanthamoeba actin 90 have the same viscosity in KCl or MgCl₂ (Figure 5b).

Various physical measurements show that Mg⁺⁺ causes Physarum actin to polymerize but that the resulting polymer is apparently shorter and more flexible than ordinary actin filaments. The sedimentation coefficient of Mg-polymer is about the same as that of actin polymerized in 0.1 M KCl, but the boundary shows less self-sharpening, indicating that the polymer is less asymmetric. 73 Compared with actin polymerized in KCl, Mgpolymer has a much lower viscosity, 73 less flow birefringence,53 and shorter filaments are seen in electron micrographs. 53 Similar differences in length and flexibility have been identified by quasi-elastic scattering of laser light. 91

In addition to these distinctive physical properties, Mg-polymer continues to hydrolyze ATP after the completion of polymerization.⁷³ This continued hydrolysis is accompanied by

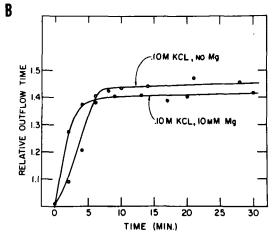


FIGURE 5. The polymerization of Physarum actin in the presence of KCl and Mg⁺⁺ or KCl alone. A. Conditions are 0.1 M KCl or 0.1 M KCl + 2 mM MgCl₂. (From Totsuka, T. and Hatano, S., ATPase activity of plasmodium actin polymer formed in the presence of Mg²⁺, Biochim. Biophys. Acta, 223, 189, 1970. With permission.) B. (From Adelman, M. R. and Taylor, E. W., Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry, 8, 4976, 1969. With permission.)

exchange of free ATP into the Mg-polymer. 52 Because actin monomers and actin polymerized in KCl do not hydrolyze ATP, and because ATP does not exchange into ordinary actin filaments, these results imply that in Mg-polymer either (1) the filament remains intact but intrafilament actinactin bonds are continually breaking and reforming with concomitant hydrolysis of ATP exchanged for ADP; or (2) ATP exchanges at the

ends of filaments, and the filaments themselves are continually breaking and reforming with the hydrolysis of ATP exchanged for ADP. Kinetic analysis of the course of ATP exchange favors the first mechanism,52 the intrapolymer cycle of breakage and reformation of actin-actin bonds.

Mg-polymer and ordinary actin filaments can be interconverted by dialyzing a solution of one form against a solution which favors the other form. This transformation is usually rather slow, but Mg-polymer can be transformed to ordinary actin filaments in 30 min by heating the Mg-polymer at 55°C in the presence of suitable concentrations of ATP and KCl. 92 After transformation at 55°C, "the reverse transformation of F-actin to Mgpolymer was not induced by simply changing the condition to that favorable to the Mg-polymer."92 Data in support of this important result were not presented, but the statement suggests that Mgpolymer transformed into ordinary actin filaments by heating cannot be transformed back to Mgpolymer. It will be important to determine whether the heat treatment irreversibly alters the actin itself or some other protein component (such as beta-actinin), which recent results suggest is necessary for the formation of Mg-polymer. 59

Recent experiments show that the treatment of Mg-polymer with KCl and ATP at room temperature induces a rapid increase in both the root mean square end to end distance (calculated from the quasi-elastic scattering of laser light)91 and the viscosity, together with a decrease in ATPase activity. 93 Superficially, the results appear to contradict earlier statements that the interconversion of Mg-polymer and ordinary polymers is very slow at room temperature. However, the observed changes in these parameters indicate that there was an incomplete conversion of Mg-polymer to ordinary polymer in the recent experiments. These results could be accounted for if the conversion proceeds through a rapid initial step followed by a slower, rate-limiting step.

Which form of *Physarum* actin polymer exists in the living cell? There is no direct evidence on this point, but measurements of the total concentration of Mg** (7 mM), Ca** (1.2 mM), K* (28 mM), Na⁺ (0.9 mM), 53 and ATP 94 (0.4 mmol/kgwet wt) indicate that Mg-polymer might be the type of *Physarum* actin polymer found in vivo. In addition, the experiments showing rapid changes in Mg-polymer at room temperature suggest that

the flexibility of actin polymers in vivo could be controlled by changes in the concentration of ions and ATP.

Recent data suggest that the formation of Mg-polymer may be caused by the presence of beta-actinin* contaminating certain preparations of actin from Physarum. When actin and betaactinin from rabbit muscle are mixed together and the actin is polymerized with MgCl2, then the polymers formed have the low viscoisty, the low birefringence, and the short particle lengths typical for Mg-polymer from Physarum. 59 The Mg-polymer of muscle actin also hydrolyzes ATP, but the rate is about one half that found for Mg-polymer from Physarum. The mixture of muscle proteins could be transformed into ordinary actin polymers by heating at 55°C, and ATP was necessary for this process as is the case for transformation of Mg-polymer from Physarum. However, KCl was not required for thermal transformation of the muscle proteins, although it is necessary for transformation of the Physarum actin. Unpublished data of Maruyama et al. (see Reference 9 of Kamiya et al.)⁵⁹ which are stated to show that a beta-actininlike protein is present in Physarum and data of Maruyama 95 which show that beta-actinin from muscle can be inactivated by heating between 50 to 60°C raise the possibilities that the actin from Physarum forms Mg-polymer because it is contaminated with low levels of a beta-actininlike protein and that thermal transformation of Mg-polymer to ordinary polymer is caused by thermal denaturation of the possible beta-actinin contaminant. If beta-actinin is required for the formation of Physarum Mg-polymer and Adelman and Taylor's preparation of Physarum actin contains no beta-actinin, it is clear why they did not observe the formation of a low viscosity actin polymer in the presence of Mg++. Clearly, more data on the beta-actinin content of these Physarum actin preparations are necessary.

Interaction with Myosin

As discussed above, muscle myosin or its bind to muscle proteolytic fragments cytoplasmic actin filaments, giving the same distinctive appearance in electron micrographs of negatively stained specimens (Table 3; Figure 4).

This observation is very important because it shows that all actin filaments have the same helical conformation and orientation of myosin binding sites. In all cases the binding of myosin to actin is blocked by ATP or pyrophosphate. (It is generally assumed that Mg⁺⁺ is required for this dissociation. although this has not been proven in the case of the cytoplasmic actins.)

Although ATP appears to dissociate actin and myosin, in skeletal muscle, actin undergoes a cyclic interaction with myosin in the presence of ATP which activates the myosin ATPase and simultaneously generates the mechanical forces which cause movement. An in vitro correlate of this behavior is actin activation of the low ionic strength Mg++ ATPase of myosin or its proteolytic fragments, heavy meromyosin or subfragment-1.

All the cytoplasmic actins which have been tested activate rabbit myosin or heavy meromyosin ATPase (Table 4), and human platelet actin activates human platelet myosin.62 As expected from experiments with muscle actin and myosin (or heavy meromyosin), the cytoplasmic actins show greater activation when the concentration of actin is increased (Table 4). Furthermore, the activation decreases when the ionic strength is increased (Table 4), presumably owing to greater relative dissociation of actin filaments from myosin or heavy meromyosin at higher ionic strengths. 28,95a

Actin from Acanthamoeba, Dictyostelium, and human platelets activates rabbit myosin or heavy meromyosin less efficiently than equal amounts of rabbit muscle actin (Table 4). In contrast, actins from chick embryo fibroblasts and rabbit muscle are equally efficient activators of rabbit myosin ATPase (Table 4). Of course, the results with the protozoan actins could be explained by the presence of contaminating proteins or denatured actin, but a more interesting possibility is raised by experiments with tropomyosin and troponintropomyosin. Eisenberg and Weihing found that when troponin-tropomyosin⁹⁶ or tropomyosin alone⁹⁷ is added to a mixture of Acanthamoeba actin and rabbit heavy meromyosin, the activation more nearly reaches the activation caused by rabbit actin alone. More experiments will clarify these interactions, but it appears that some actins

^{*}Beta-actinin is a protein isolated in low yield from muscle which may be related to actin because its amino acid composition is very similar to that of actin. Digestion of actin filaments with Nagarse causes them to behave like actin filaments containing beta-actinin, raising the possibility that beta-actinin may be denatured actin. 95

TABLE 4

	Activation	on of Mg-ATPase of Myosin or Heavy Meromyosin by Various Cytoplasmic Actins	r Heavy Meromyosin by	Various Cytoplasm		Mo ⁺⁺ ATPase	
				No actin	Cytoplasmic actin	Activation factor	factor
							Rabbit
Source of actin	Rabbit myosin or heavy meromyosin?	Concentration of actin (mg/ml)	Concentration of KCl (mM)	(μmol/min mg myosin heavy meromyosin)	(μmol/min mg myosin or heavy meromyosin)	Cytoplasmic actin	muscle actin
Acanthamoeba**	HWM	0.2	7.7	0.03	0.20	6.7	
		0.2	10.7		0.16	5.3	21.6
		0.2	12.7		0.14	4.6	
		0.4	12.7		0.21	7.0	
Brain 49	Myosin	Between 0.01-0.05	09	0.022	0.10	4.7	
Dictyostelium43	Myosin	0.05	50	0.015	0.078	5.2	23
Fibroblast	Myosin	0.023	20	0.008	0.067	8.0	9.3
(chick embryo)39					0.087	10.4	
Platelet	Myosin ^{4 6}	Between 0.2-0.4	09	0.086	0.426	5.0	
(human)	HMM*8	0.2	13	0.10	1.49	14.9	
	Myosin ⁶ 2	0.056	20	0.02	0.024	1.2	2.2
		0.112			0.028	1.4	3.8
		0.164			0.031	1.5	5.1
		0.221			0.034	1.7	6.5
Physarum	Myosin ¹²		50	0.019	0.28	14.7	
			100	0.013	0.11	8.5	
			009	9000	0.013	2.2	
	Myosin ¹⁶	0.14	24	0.015	0.185	12	
		0.14	39	0.011	0.046	4.1	

may require tropomyosin for efficient activation of myosin ATPase. (There is a precedent for a tropomyosin requirement for actin activation of myosin ATPase in muscle from the horseshoe crab, Limulus, but there the tropomyosin-dependence is a property of Limulus myosin, not Limulus actin.98)

A further discussion of the interaction of cytoplasmic actin with the regulatory proteins, troponin-tropomyosin, is found below in the section on control mechanisms.

Other Methods of Identifying Actin

The preceding discussion has illustrated in detail how actin can be identified in nonmuscle cells by direct isolation and characterization. Often, however, it is not practical to carry out direct isolation, and so it seems useful to discuss several less direct, small-scale methods of identifying actins. These are (1) heavy meromyosin binding, (2) ultrastructural observation of depolymerization, (3) formation of paracrystals, (4) peptide mapping, (5) coelectrophoresis with authentic actin, and (6) content of N^T-methylhistidine. Recent information about a naturally occurring antibody which may be specific for actin is also discussed.

Heavy Meromyosin Binding

Because the complex of muscle heavy meromyosin (or subfragment-1) with all purified actin filaments is so distinctive (Figure 4), the formation of these "arrowheads" can be used for the tentative identification of other actin filaments. Three-dimensional reconstruction of the complex is now well understood and illustrates how the arrowhead shape is the consequence of very specific interactions between actin and the myosin head.84 It appears extremely unlikely that a complex with similar morphology might arise from the interaction of myosin with any type of filament except actin, making this the most specific "histochemical" technique yet devised. Although heavy meromy osin does not visibly bind to membranes or filamentous structures such as microtubules, 17,99-101 neurofilaments, 17,99 tonofilaments, 17 or bacterial flagella, 99 we recommend that the specificity of the reaction between heavy meromyosin and a presumed actin filament be confirmed by showing that inhibitors of actinmyosin interaction like Mg** ATP or Mg** pyrophosphate block the binding of heavy meromyosin to the filament.

The complex between heavy meromyosin and actin is visualized most easily by negative staining, but this procedure is not applicable to intact cells, and the information about the location of the actin filaments within the cells is lost. This problem was overcome when Ishikawa and coworkers¹⁷ discovered that muscle heavy meromyosin will enter glycerinated cells and bind to 6 nm filaments in a manner identical to the binding of heavy meromyosin to muscle actin filaments. Their technique has been widely used to identify actin filaments within cells (Table 5). The initial report described the reaction of heavy meromyosin with cytoplasmic filaments in cells where biochemical proof for the existence of actin was lacking, but the validity of the procedure is now firmly established by experiments with Acanthamoeba,75 intestinal brush border,38 platelets, 62,100-101 and Physarum 80,116 which show that filaments of purified cytoplasmic actin and 6 nm filaments in situ react with heavy meromyosin in the same way.

The distinctive morphology of the heavy meromyosin-actin filament complex, on which the specificity of this technique is based, is much more difficult to resolve in thin sections than by negative staining, making the controls with ATP or pyrophosphate even more important than when negative staining is used. The problem with visualizing the arrowheads is apparently related to two properties of these preparations: There may be some shrinkage and distortion of the complex during fixation, embedding, and sectioning; but, more importantly, when decorated filaments are viewed in a random thin section of a cell, most of the filaments will be oriented at some angle other than 90° to the electron beam. Because of this tilting, the apparent periodicity of most of the arrowheads will be less than the true value of about 36 nm, and many of the decorated filaments will appear fuzzy rather than having definite polarized arrowheads. Experiments using an electron microscope with a tilting stage show that this fuzziness can be due to the overlapping of adjacent arrowheads on filaments tilted more than 20 to 30° away from perpendicular to the beam. 117

It may also be possible to identify actin by fluorescence microscopy of cells treated with heavy meromyosin tagged with fluorescein, 117a

TABLE 5 Thin Filaments of Nonmuscle Cells Decorated in situ with Heavy Meromyosin

			Localiza	Localization in cell				
Type of cells	Spacing of heavy meromyosin (arrowhead) complexes	Complexes dissociated by ATP or pyrophosphate	Seen with or without heavy meromyosin	Seen only after treatment with heavy meromyosin				
1. Blood cells								
Macrophages (guinea pig) ¹⁰²								
Platelets (human) ^{100,101}	36	Yes	Cortical					
2. Connective tissue				Cortical in				
Chondrogenic cell (chick embryo) ¹⁷	37.8 ± 3.1	Yes		metaphase arrested cells				
Fibroblasts (chick embryo) ¹⁷				As preceding				
(chick embryo heart) ¹⁰³ (mouse, Balb/c 3T3) ¹⁰⁴			Sheath; possibly network filaments	no precoding				
(mouse, Baio/c 313)			Anterior expansion					
3. Epithelial cells			•					
Epidermis (chick embryo) ¹⁷ Intestine (chick embryo) ¹⁷ (chicken) ³⁸	34.6 ± 3.2		Brush border Brush border					
Lung (mouse embryo) ¹⁰³ Renal tubule (rat) ¹⁰⁵ Salivary gland (mouse embryo) ¹⁰³		Yes	Base and apex Base Base and apex					
Trachea (chick embryo) ¹⁷			Brush border					
4. Nervous tissue		••						
Glia (chick embryo) ¹⁰⁶		Yes	Cortical sheath					
Neurones (chick embryo) ¹⁰⁶ Neuroblastoma (mouse) ^{107,108}	35	Yes	Panaath nlaama					
ivedicolasionia (mouse)	30		Beneath plasma membrane in axon and cell body; more abundant after heavy meromyosin					
5. Reproductive tissue								
Egg (newt) ¹⁰⁹			Contractile ring					
Spermatocyte ^{110,111} (crane fly)		Yes		Spindle and cortex				
Spermatozoa (crane fly) ¹¹² (starfish) ¹¹³	36		Acrosomal	Sperm tail				
(sea urchin) ¹¹³²	36		process					

TABLE 5 (continued) Thin Filaments of Nonmuscle Cells Decorated in situ with Heavy Meromyosin

			Localiz	zation in cell
Type of cells	Spacing of heavy meromyosin (arrowhead) complexes	Complexes dissociated by ATP or pyrophosphate	Seen with or without heavy meromyosin	Seen only after treatment with heavy meromyosin
Testis (locust) ^{1 1 4}			Spindle and c not stated if presence of ments requi heavy meror	fila- res
6. Protozoa Acanthamoeba ^{75,118}	30-35	Yes	Cortical; attached to isolated plas membrane	ma
Amoeba proteus 115	38	Yes	Seen in motile extracts	e
Chaos carolinensis ²³¹	34	Yes	Plasma memb cortex, cent region	•
Physarum ¹¹⁶ .	20-29 a few with 33		J	
7. Cultured cell lines HeLa ²⁶⁸ Erlich ascites ^{268 a}	27-35 36	Yes Yes	Contractile ri Microvilli, co near nucleus	rtex,
8. Plants Nitella 1 1 8 2	37	Yes		

although this approach has not been extensively investigated.

Depolymerization

Because actin filaments depolymerize in dilute buffers, presumed actin filaments can be tested for this property and the results assessed by electron microscopy or gel electrophoresis. 127 This approach recently has been used by Pollard and Korn¹¹⁸ to selectively remove actin filaments from purified Acanthamoeba plasma membranes and could theoretically be used on glycerinated cells.

Paracrystals

Formation of the distinctive actin paracrystals (Figure 3) in 50 mM MgCl₂ has been used to identify actin in isolated endoplasm from Physarum. 83 This approach should be applicable to other small samples of material, providing that they contain high enough actin concentrations to allow paracrystal formation.

Antibody

Although it has been difficult or impossible to experimentally produce antibodies to pure actin (perhaps because of the ubiquity and similarity of the actins), it now appears that some patients with an inflammatory liver disease known as chronic active hepatitis have, for unknown reasons, a naturally occurring antibody which may react specifically with actin. Originally it was shown by fluorescence microscopy that the antibody bound to smooth muscle cells,119 and recently Gabbiani

et al.120 found that these sera react with a number of cells known to contain actin, including platelets, cultured fibroblasts, and intestinal epithelium. Three observations support, but do not prove, the idea that the antibody specifically binds to actin: (1) The serum precipitates pure platelet actin; (2) the binding to cells is blocked by absorption of the serum with pure platelet actin; and (3) by immunofluorescence the antibody binds to specific parts of cells known to contain actin, such as intestinal and renal tubular microvilli and the "stress fibers" in cultured fibroblasts. The technique has now been used to tentatively identify actin in hepatocytes, renal glomeruli, certain lymphocytes, some endothelial cells, and in granulation tissue fibroblasts of healing wounds. 120

Peptide Mapping

This is another method which should be nearly specific as heavy meromyosin binding for identifying actin in cells in which it is impractical to identify actin by direct isolation. Three factors contribute to the success of this approach. First, it is already known that peptides having similar compositions are present in actin from Acanthamoeba, rabbit skeletal muscle, and bovine myocardium^{51,65} and that actins from various mammals, chicken, frog, perch, and scallop all have many tryptic peptides with identical mobilities on peptide maps. 121 Thus, it is likely that authentic actin and other as yet unidentified actins will have similar peptide maps. Second, it is expected both on theoretical and experimental grounds that a pure protein will produce a specific peptide map. Third, various methods are available by which peptide maps can be produced from very small amounts of material, even as small as the amount of protein found in a single band on a polyacrylamide gel.

In the studies available so far, radioactive peptides from cytoplasmic actins were identified on radioautograms of the peptide maps by comigration with peptides derived from muscle actin. Radioactivity was introduced in two ways. In the case of actin from neurones of chick embryo sympathetic ganglia,66 dissociated neurones were grown in the presence of 35 S-methionine. In the case of actin from chicken epithelial cells, fibroblasts, and neurones,5 a presumed actin band was eluted from a polyacrylamide gel, and the protein was iodinated with 125 I in the presence of chloramine T (method of Hunter and Greenwood). 122 In both procedures the presumed actin was shown to have the same molecular weight as authentic actin by electrophoresis, and tryptic digestion and electrophoresis in two dimensions at two different pH's were carried out on the small amounts of protein eluted from polyacrylamide gels.

In the case of neuronal actin labeled with ³⁵S-methionine, 10 of 14 radioactive spots coincided with ninhydrin spots derived from added carrier muscle actin. The number of radioactive spots produced (total of 14) was close to the expected number of tryptic peptides which should contain methionine (11 or 12) (derived from the sequence data for muscle actin^{61,65}). Four radioactive spots did not coincide with ninhydrin spots, suggesting either that (1) the actins from neurones and from muscle contain different peptides and, therefore, differ slightly in sequence or that (2) the actin eluted from the gels is impure. These possibilities cannot be distinguished without further experiments.

In the case of the 195 I labeling procedure, actin from chicken epithelial cells, fibroblasts, and neurones gave the same peptide map as chicken actin. Similarly, the actin from scallop gill gave the same peptide map as actin from scallop muscle. However, there were differences between the scallop and chicken actin; one peptide was absent, and another was shifted in the maps of scallop actin. This degree of species difference is consistent with the degree of difference observed by Carsten and Katz¹²¹ for peptide maps of muscle actin from these two species.

Again using the sequence data for muscle actin,61,65 if one assumes that both tyrosine and histidine (the major expected sites for iodination) are fully iodinated or that only tyrosine is fully iodinated, then either 14 or 12 radioactive peptides should be produced. Somewhat fewer than this number were found, and, while it is known that iodination is frequently incomplete, 123 the meaning of the observation of fewer than the theoretical number of peptides is difficult to evaluate because some spots were very faint and combined data from several maps were not presented, nor were analytical data showing the degree of iodination of tyrosine and histidine presented.

In both these methods, label is introduced into only a limited number of the 40 or so peptides

which are expected in a tryptic digest of actin, and, thus, all the information which is potentially available in peptide maps of actin has not yet been considered. It should be possible in principle to identify all the peptides by reacting them with sensitive fluorescent reagents such as dansyl chloride, as described by Gerday et al. 124 for bovine carotid actin or a newly developed fluorescent reagent, fluorescamine. 125 Combining the approach of identifying all peptides with the approach of identifying peptides which are specifically labeled in vivo with a radioactive amino acid such as 35 S-methionine should provide still more discrimination. In contrast, the use of 125 I labeled peptides seems fraught with difficulties because of uncertainties about the degree and sites of iodination alluded to earlier.

of N^{τ} -Coelectrophoresis Presence and methylhistidine

Two easy methods are available for tentative identification of actin in a cell: coelectrophoresis with authentic actin and identification of N^{T} -methylhistidine. A band which comigrates with authentic actin is prominent in the electrophoretic pattern of unfractionated Acanthamoeba 126,127 and chicken intestine brush border. 38 In both cases actin has been identified in these cells by direct isolation, but, if this had been impractical, it would have been possible to verify the identification by peptide mapping.

 $N^{\prime\prime}$ -methylhistidine is an unusual amino acid which to date has been identified only in the contractile proteins actin and myosin and certain nuclear proteins. 128-130 Its identification in a cell such as Acanthamoeba44 provides suggestive evidence for the presence of the contractile proteins actin and myosin.

Content of Actin in Cells

To understand the function of cytoplasmic actin, it will be necessary to know how much actin a cell contains so that this can be related to the content of myosin and other contractile proteins. Estimates of actin content are available for several cells, but, as discussed below, it should be possible to refine the experiments to obtain more precise estimates.

The maximum and minimum actin content of any cell can be established by determining the cell's content of N^{T} -methylhistidine and the yield of purified actin, respectively. For example,

Acanthamoeba contains enough N^{T} -methylhistidine that if it were present only in actin, then 20% of the cell's protein would be actin, but only 0.2% of the cell's protein is recovered as purified actin.44 The true value lies somewhere between these limits, because N^{T} -methylhistidine may be present in other proteins and there are significant losses during purification. Purified actin accounts for about 2 to 4% of Physarum16 and 10 to 13% of sea urchin egg protein.3 7a

Quantitative densitometry of a gel electrophoretic pattern can also be used to estimate the amount of actin in a cell or cell fraction. In Acanthamoeba, 126 guinea pig granulocytes, 76 and human platelets, 130a a protein with the mobility of actin accounts for 10 to 15% of the stained protein. In sympathetic neurones grown in tissue culture in the presence of ³⁵S-methionine, quantitative densitometry of the radioautogram of the gel electrophoretic pattern of a soluble fraction showed that a protein with the mobility of actin accounts for 20% of the radioactivity.66 These experiments can provide reliable estimates of the amount of actin (and other proteins) in whole cells and cell fractions, provided all the following information is available: (1) the relation of staining intensity (or film blackening) to the amount of protein applied to the gel, (2) the absence of gross contamination with proteins of similar mobility as shown by peptide mapping⁶⁶ or N-terminal amino acid analysis, and (3) in the case of radioautography, the cells are labeled for long enough to assure that the proteins are uniformly labeled.

An independent measurement of actin content might be made by immunological methods, provided it can be shown that the antibody present in sera of patients with chronic active hepatitis is specific for actin.

A simple calculation can be made to decide whether these estimates of the amount of actin in a cell are consistent with the appearance of the actin filaments in a thin section. In Acanthamoeba, which contains 0.43x10⁻⁶ mg of protein per cell, 131 0.2% of the cell protein was isolated as actin.44 Assuming a molecular weight of 45,000 daltons, then one cell contains at least 11.5x10⁶ molecules of actin. Assuming that all the actin is polymerized into filaments with a pitch of 74 nm and that there are 28 monomers per turn, then we can use the number of molecules per cell to calculate that one cell should contain 30,000

filaments 1 μ m long. If the cell is a sphere 26 μ m in diameter, 132 then a thin section 60 nm thick taken at the equator will account for 0.35% of the volume of the cell. Thus, if the actin filaments are distributed uniformly throughout the cell, then 0.35% of them or about 100 filaments should be visible in such a thin section. If the estimate of actin content based on the amount of N^{7} -methylhistidine is correct, then 20% of the cellular protein is actin, and the parameters should be upward 100-fold, i.e., to 11.5×10^8 molecules of actin per cell and about 10,000 filaments in a thin section. This range is in rough agreement with the number of thin filaments seen in fixed amoebas, 75,133 and this is gratifying because we used assumptions which are either clearly incorrect (uniform distribution of actin filaments) or about which there is no quantitative information (degree of polymerization, length of filaments).

MYOSIN

It is generally accepted that neither actin nor my osin is capable, by itself, of generating force for movement in muscle. This implies that if the cytoplasmic actins discussed above are involved in cell movement, then myosin must coexist with actin in the cytoplasm. Although the studies on cytoplasmic myosins are less extensive than the studies on cytoplasmic actins, myosin has been found in several actin-containing cells, and it is likely that further investigation will reveal other examples.

Two striking generalities have already emerged from these studies: (1) All of the myosins share with muscle myosin two features thought to be essential for force generation in muscle, namely, the ability to bind reversibly to actin filaments and possession of an actin-activated ATPase activity; and (2) in contrast to the actins, muscle and cytoplasmic myosins vary considerably in their physical, chemical, and enzymatic properties.

The diversity of the myosins has led to the question of which enzymes should be called myosins. We suggest that the term myosin be used to designate a class of enzymes with actinactivated ATPase activity that binds reversibly to actin filaments. This definition which is based on the properties most important to the function of myosin during contraction is likely to include all myosins and still allow for considerable variation in other properties such as size and shape.

To date, five classes of myosin have been discovered, and their properties are summarized in Tables 6, 7, 8, and 9. While this classification is admittedly arbitrary, it is useful for organizing the discussion. Each class will be considered in turn and the general conclusions discussed thereafter.

Striated Muscle Myosin

Because of the wealth of experimental data on the properties of myosin from vertebrate striated muscles (especially rabbits and chickens) (see Lowey, 1971, for a review), 26 these myosins are generally thought of as "typical" myosins with which all other myosins are inevitably compared. Since more is known about the contractile process in striated muscle than elsewhere, these comparisons have been extremely useful in studying the mechanism of force generation in other cells. On the other hand, it is well to remember that striated muscles and their myosins are highly specialized for a stereotyped contractile movement, so these myosins may not be "typical" myosins in some respects.

Striated muscle myosin is a large molecule with a molecular weight of about 470,000 daltons. 134,135 It is composed of two large polypeptide "heavy" chains (200,000 daltons each) and two or more small polypeptide "light" chains with molecular weights of 16,000 to 27,000²⁶ daltons (Table 6). The number and size of these light chains vary from one muscle type to the next. 136-138 In addition, limited amino acid sequence data have proven that cardiac and skeletal muscle myosins have similar but not identical heavy chains. 139

Biochemical analysis and electron microscopy revealed that each myosin molecule is composed of two globular "heads" attached to a long "tail." 140,141 (Figure 6). The tail (also known as the "rod") is about 140 nm long and is composed of the C-terminal half of the two heavy chains. 142 The two polypeptides are almost completely alpha-helical and are wound around each other in a coiled-coil. About 90 nm from the tip of the tail is a section which is particularly susceptible to cleavage by proteolytic enzymes (such as trypsin)141 or by cyanogen bromide.142 It has been postulated,4 but not proven,26 that this region may serve as a "hinge" in the tail of the molecule. Each of the two globular heads consists

TABLE 6

Physical Properties of Various Myosins

in	0.6 M KCI 0.1 M KCI	Monomer Large bipolar filament	Monomer Bipolar ¹⁴⁶ fîlaments	? Monomer Small bipolar filaments	with Mg ^{**} Monomer Bipolar ^{1 4 8} filaments	? Monomer Small bipolar	inaments ?	Monomer Small ¹⁵² bipolar filaments with Ca**	Monomer Monomer
	Sedimentation coefficient (S)	6.4		c	6.8147	<i>c</i> ·	ć.	6.38	^8 ₁₁ ,
	Stokes radius (A)	192	~190,17	∿190	~190111	٠.	ç.	17116	
	Subunit composition (#x daltons)	2 x 200,000 1 x 20,000 2 x 18,000 1 x 16,000	$?x 200,000^{11}$ $?x \sim 19,000$ $?x \sim 16,000$? × 200,000 ? × ∼20,000	2 x 200,000 ^{1 48} 2 x 19,000 ⁴⁸ ,130 ³ 2 x 15,000	? x 200,000 ? x ~20,000	?×∿240,000	? 2 x 240,000 ¹⁵ 1 ? x ~12,000	1 x 140,000 ? 1 x 16,000 ? 1 x 14,000
Native	molecular weight (daltons)	460,000		6 -1	~540,000'47	٠.	٠.	~460,000¹ ¢	~180,000
	Type of myosin	1. Striated muscle Rabbit skeletal ²⁶	2. Smooth muscle Human uterus	3. Vertebrate cytoplasmic Guinea pig granulocyte ⁷⁶	Human platelet	Mouse fibroblast 149	Rat brain 150	4. Physarum	5. Acanthamoeba ^{126,153,154}

RIGHTSLINK

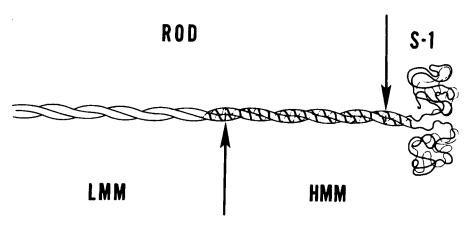


FIGURE 6. An artist's conception of the structure of a muscle myosin molecule. The heavy lines represent the myosin heavy chains, and the light lines represent the myosin light chains. The upper arrow shows the position where papain cleaves the molecule, and the lower arrow shows the position where trypsin cleaves the molecule. LMM: light meromyosin; HMM; heavy meromyosin; S-1; subfragment-1, the heads of the molecule; Rod: the tail of the myosin. (From Lehninger, A. L., Biochemistry, Worth Publishers, New York, 1970, 589. With permission.)

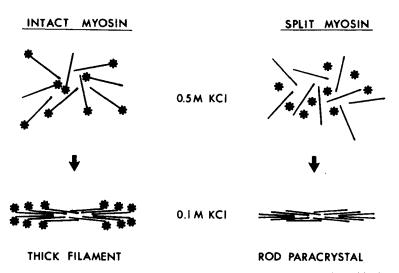


FIGURE 7. Line drawings showing the assembly of myosin into bipolar filaments and the assembly of myosin rod into paracrystals in 0.1 M KCl.

of the N-terminal half of one of the heavy chains with associated light chains. Each head contains an actin binding site and an active site for ATP hydrolysis. 141

The physical properties of the various regions of the molecule are closely related to their function. The C-terminal 90 nm of the tail can be isolated by limited proteolytic digestion, and the fragment is known as light meromyosin. Under physiological conditions this portion of the tail is insoluble and aggregates with other myosin tails to form the backbone of the thick filaments found in

striated muscle (Figure 7).18 The part of the molecule on the N-terminal side of the "hinge" region shows no tendency to aggregate under physiological conditions, 141 so it may be free to swing out from the backbone of the thick filaments to interact with actin and thereby form a crossbridge between the two filaments.4

Myosin has the property, apparently unique among ATPases, that its enzyme activity is strongly inhibited by Mg++ and activated either by Ca** or by K* in the presence of EDTA.143 (The EDTA is required to chelate Mg++ contaminating

the ATP.)144 The Ca++ and EDTA activations are useful for following myosin during purification procedures, but only the activity in the presence of Mg⁺⁺ is physiologically relevant, because the other conditions are not found in muscle.

As a consequence of the Mg++ content of muscle (> 8 mmol/kg),²⁰ myosin ATPase activity would be too low to account for the transduction of the chemical energy of ATP into force for movement, if it were not for the unique ability of actin filaments to activate the Mg++ ATPase activity of myosin.28 This effect of actin seems to be due to its ability to facilitate the dissociation of the products of ATP hydrolysis from the myosin, the step which is thought to be rate limiting in the ATPase reaction.^{22,145} Consequently, ATP hydrolysis is tightly coupled to actin-myosin interaction, which in turn utilizes, in some unknown way, the energy from ATP hydrolysis to drive the force generating mechanism, causing the actin filaments to slide past the myosin. In this complicated reaction, ATP plays a dual role: It is the source of energy which drives the reaction, but it also dissociates actin from myosin 145a to start each new cycle of interaction consisting of (1) ATP hydrolysis by myosin, (2) dissociation of products of ATP hydrolysis upon binding of actin to myosin, (3) sliding movement, and (4) dissociation of actin from myosin by the rebinding of ATP to the myosin. 145 Recent work 145b-d suggests that the actual mechanism may be more complicated than this simple four-step model suggests.

Smooth Muscle Myosin

In spite of the importance of smooth muscle for visceral and vascular function in higher organisms, relatively little is known about smooth muscle myosin (less, in fact, than is known about some of the cytoplasmic myosins discussed below). In general, smooth muscle myosins resemble striated muscle myosins from the same species. They are large molecules composed of heavy chains with a molecular weight of about 200,000 daltons and two classes of light chains, 1302 one of which is not essential for ATPase activity. 138 Actin activated ATPase activity is lower than that of striated muscle myosins (Table 7), presumably accounting for the slow contractions typical of smooth muscle.157 Under more or less physiological conditions,

purified smooth muscle myosin will form thick filaments which have been variously described as having typical bipolar symmetry with a bare central zone 146,158 or an asymmetrical distribution of projections on the two sides of the filament. 159 Several laboratories have now observed thick filaments in electron micrographs of thin sections of fixed smooth muscle, 160-163a but there is a lively debate as to whether these filaments occur in the living muscle. 160-163c

Vertebrate Cytoplasmic Myosin

It is now conclusively proven that myosin is present in a number of vertebrate cells or tissues which are clearly not muscle, including platelets, granulocytes, fibroblasts, and brain (Tables 6, 7, and 8). The identification of these myosins is based in each case on purification of the protein and demonstration that it has ATPase activity and will interact with actin filaments in the expected manner. As there are no major differences among these proteins, they will be considered together and are likely to be found in virtually all motile cells of higher organisms. It has been noted in the original reports that these myosins resemble smooth muscle myosin in certain respects, but there is no definitive data showing that they are, in fact, identical.

Several schemes have been developed for the purification of these myosins, most of which use high ionic strength extraction of the tissue followed by precipitation of actomyosin at low ionic strength. Granulocyte myosin can also be extracted in 0.34 M sucrose. 76 Ultracentrifugation of the resulting actomyosin in concentrated KCl with Mg⁺⁺ and ATP separates some of the actin from the myosin, but there is inevitably some contamination with actin, possibly because small oligomers of actin do not sediment rapidly enough to be separated from the myosin. Ammonium sulfate fractionation or sucrose gradient ultracentrifugation has achieved further purification in some cases, but the most successful procedure has been gel filtration, 76,148,149 which takes advantage of the large Stokes radius of the myosin to separate it from contaminating proteins. In the case of fibroblast myosin, this results in a homogenous protein. 149 Even with gel filtration, contamination with actin or proteolytic fragments of the myosin has been a problem with platelet and granulocyte myosins. This has now been overcome by first depolymerizing the actin oligomers with

TABLE 7

Enzymatic Activity of Various Myosins

ATPase activity (μ mol P_i/min/mg protein)

	Substrate specificity	:	ITP, UTP, GTP20	>ATP, CTP						٠	٠.	٠.	ATP>ITP>GTP		ATP>GTP, CTP, ITP
Energy of	activation (Kcal/mol)		12					·	i	6.	٠.	٠.	12		6
,	Temperature (°C) of assay	,	25	37		25	37		25	37	37	37	20	25	29
	Mg ⁺⁺	,	0.00	0.01		0.004	0.03		0.020	0.02	<0.01	0.03	0.03	0.030	<0.05
	‡ ₽	,	0.19	1.0		0.28	0.80		0.208	0.44	0.50	0.27	0.87	0.537	0.4
	K'EDTA	•	1.51	5.5173		0.61	1.37		0.186	0.55	0.43	۰.	0.0316	0.007156	3.5
	Type of myosin	1. Striated muscle	Rabbit skeletal		2. Smooth muscle	Horse esophagus ^{157a}		3. Vertebrate cytoplasmic	Guinea pig granulocy te 76	Human platelets 148	Mouse fibroblast 149	Rat brain 150	4. Physarum		5. Acanthamoeba 126,153

Actin-Myosin Interaction

	Actin Binding	inding			Mg [™] ATPase		
Type of myosin	-ATP	+ATP	actin	+ actin ^a	Actin concentration (mg/ml)	Ionic strength (M)	Temp. (°C)
1. Striated muscle Rabbit skeletal (heavy meromyosin) ^{2 a}	Yes	o Z	0.02	1.0	0.9	~0.066 ~0.106	25 25
2. Smooth muscle Horse esophagus ^{1 5 1 a} 3. Vertebrate cytoplasmic	Yes	No	0.004	0.015	0.07	0.074	25
Guinea pig granulocy te ' 6 Human platelet (head) * 8	Yes Yes	° ° °	0.0025 0.02	0.0075 0.07	0.68 0.8	0.10 0.039	25 37
Mouse fibroblast 4 % Rat brain 1 %	Yes	δ. •	0.01	0.09	0.3	0.035	37
4. Physarum ¹⁵⁶	Yes	°Z	0.027	0.057 0.047 Physarum		0.046	25
5. Acanthamoeba ¹⁵⁴	Yes	No	0.05	actin 1.5	1.0	0.016	29

^aRabbit muscle actin unless noted otherwise.

KI49 and separating the myosin from the actin by gel filtration in a buffer containing KI, ATP, and a reducing agent. 76,130a

While the myosin content of these cells is not known precisely, estimates based on enzyme activity of purified myosin and crude homogenates or on densitometry of SDS-polyacrylamide gels of whole cells show that the amount of myosin is variable, being as high as about 2% in platelets 1 3 0 a, 1 4 8 or less than 1% in granulocytes. 76 In all cases, though, there is a clear excess of actin over myosin.

Like muscle myosin, these cytoplasmic myosins have a sedimentation coefficient of about 6S and a large Stokes radius (derived from gel filtration), which together are indicative of a large asymmetrical molecule (Table 6). Estimation of the native molecular weight of platelet myosin from the sedimentation coefficient and diffusion coefficient gave a value of 540,000,147 and, while this value is undoubtedly close to the true value, the electron micrographs of these myosin preparations 147 and the experience of other investigators indicate that this platelet myosin must have been contaminated with some platelet actin. Gel electrophoresis in SDS shows that these myosins all consist of heavy chains with molecular weights of 200,000 daltons and usually two classes of light chains with molecular weights of 16,000 and 19,000 daltons, 48,130a,164a present in a molar ratio of roughly 1:1:1. Presumably, these myosins consist of two heavy chains and one or more of each of the light chains, although the exact stoichiometry is not known.

The amino acid composition is known only for human platelet myosin, and it appears to be very close to the composition of rabbit muscle myosin. Only four residues differed by more than 10% according to the analysis of Booyse, et al., 147 and the similarities may be even more striking in samples free of actin contamination. Adelstein and colleagues 164,164a have isolated the two light chains from human platelet myosin. One of the platelet myosin light chains contains a phosphorylated amino acid, and the amino acid composition of these light chains differs clearly from rabbit skeletal muscle myosin light chains. 165 This_ difference in light chains is not unexpected as it has been shown by amino acid sequence that one of the rabbit cardiac muscle myosin light chains is

unrelated to the skeletal muscle myosin light chains from the same animal. 138 In the same manner, it would be surprising if the amino acid sequence in the heavy chains of the cytoplasmic myosins was the same as the muscle myosin heavy chain sequence because of the known differences in the sequence of myosins from skeletal and cardiac muscle. 139

Individual myosin molecules in this class have not been directly visualized by electron microscopy, but is is clear in the case of the platelet myosin that the molecule consists of two distinct regions as does muscle myosin. This assertion is based on the isolation of two fragments of the platelet myosin molecule corresponding to the head region and the tail region of the molecule.148 The mechanism of this cleavage is not known, but it is thought to be due to proteolytic digestion of the myosin in the intact platelet or during the isolation procedure. The tail region consists of polypeptides with a molecular weight of about 130,000 daltons, contains little proline (as expected for a highly alpha-helical polypeptide), 165 and lacks actin binding sites or ATPase activity. The isolated head is usually contaminated with platelet actin or tropomyosin but has been obtained in sufficient purity to show that it consists of a polypeptide of about 80,000 daltons* associated with two light chains 117 and that it has the ATPase activity and actin binding site found in the intact myosin. The cleavage of the native platelet myosin must be limited and very specific as these fragments account for the mass of the entire molecule and electrophoresis in SDS reveals little size heterogeneity of the fragments (although, like muscle myosin subfragment-1,26 platelet myosin head may run as a closely spaced doublet on these gels). 117

All of these cytoplasmic myosins have ATPase activity which is stimulated by Ca++ and inhibited by Mg⁺⁺ (Table 7). There are some differences in the rates reported, but, in highly purified preparations isolated with careful protection of sulfhydryl groups, the Ca⁺⁺ ATPase rates are comparable to those of smooth and striated muscle myosins. These preparations also show high activity in the presence of KCl and EDTA, but here the rates are clearly lower than those of skeletal muscle myosin. As the activity of these myosins may be labile, detailed comparisons of ATPase rates with either

^{*}The original estimate of 100,000 daltons¹⁴⁸ for the molecular weight of the head is probably too high.¹¹⁷

smooth or striated muscle myosin do not seem to be particularly informative.

Where investigated, actin activates the low ionic strength Mg** ATPase of the cytoplasmic myosins (Table 8), but neither the amount of activation relative to the rate without actin nor the absolute rate of hydrolysis is very great, and both appear to be lower than that of skeletal muscle myosins. We suspect that improved preparative techniques or assay conditions will result in higher rates of actin activation.

Like other myosins, this group of myosins binds to actin filaments and can be dissociated from them by ATP (Table 8). This was demonstrated by sedimenting the myosin with actin in the ultracentrifuge 76,148,149 and by direct visualization of the actin-myosin complex by negative staining electron microscopy (Figure 8B and C). 76,148 The morphology of the complex between platelet or granulocyte myosin and actin filaments is identical to the muscle actin-myosin complex, showing that the head of these myosins must have the bent configuration characteristic of the head of muscle myosin.

The myosins from platelets, granulocytes, and fibroblasts all spontaneously form insoluble bipolar "thick" filaments in dilute buffers (Table 6; Figure 9C-E). Electron microscopy shows that the tail portion of the myosin makes up the fibrous backbone of the filament (Figures 7 and 9F). The lateral projections found at both ends of the filament are the globular head portion of the molecule containing the actin binding site and the ATPase activity. 148 Because these thick filaments have actin binding sites at both ends, they are capable of cross-linking two or more actin filaments (Figure 8B and C). The conditions necessary for myosin filament assembly have not been thoroughly examined, although it is clear that filament formation is promoted at slightly acid pH and by the presence of divalent cations. 166

One of the principal unresolved mysteries about these myosins is the form which they take in the living cell. In the case of platelets, for example, myosin is known to comprise about 2 to 3% of the total platelet protein, and the purified myosin

rapidly forms thick filaments in "physiological" salt solutions. 148 A simple calculation* reveals that there is enough myosin in one platelet to make 1,300 thick filaments 0.25 μ m long and that 40 of these filaments would be visible in a 60 nm thin section of a platelet. These thick filaments are rarely visualized in electron micrographs of the intact resting platelets. 100,167 It is not known whether this disparity is due to an artifact in the preparation of intact platelets for electron microscopy or whether the myosin is prevented from forming these thick filaments within the cell. Variations in the pH, ionic strength, and divalent cation concentration affect the size of the thick filaments but it is not yet known if these factors account for the absence of thick filaments from the platelet's cytoplasm. 166

In the case of fibroblasts and granulocytes, the apparent absence of thick filaments in the cells may be due, in part, to the low concentration of myosin. In addition, it has recently been shown that granulocyte myosin will not form thick filaments in dilute buffers in the absence of divalent cations, 76 so intracellular Ca** and Mg** concentrations may play a role in their scarcity in electron micrographs of intact cells.

Physarum Myosin

At the present time, Physarum myosin is the only representative of its class and is distinguished by its unusually large heavy chain and its solubility in dilute buffers. Presumably, further exploration will reveal similar myosins in related species (although apparently not in a cellular slime mold, Dictyostelium discoideum, which appears to have a myosin with a heavy chain molecular weight of 200,000, according to preliminary experiments by Clarke and Spudich¹⁶⁸).

It could be inferred from the original experiments on slime mold actomyosin by Loewy in 19526 that Physarum did indeed contain myosin, but the definitive demonstration that this is true came over 15 years later when two groups, working independently, devised two quite differprocedures for purifying myosin from Physarum.

*Platelet myosin filaments: A platelet 3 µm in diameter has a volume of 14.2 x 10⁻² cm³ and contains about 14.2 x 10⁻¹³ g of protein of which about 35 x 10⁻¹⁵ g (assuming 2.5% myosin) is myosin. One thick filament 0.3 μm long with a 0.2 µm central bare area and four myosin molecules/every 14.3 nm on each side of the bare area could be assembled from 32 myosin molecules. There are about 42,000 myosin molecules/platelet, so up to 1,300 filaments could be formed in a single platelet. A section 60 nm thick passing through the equator of a 3 µm platelet contains about 3% of the platelet's volume and, therefore, might contain 40 complete myosin filaments.

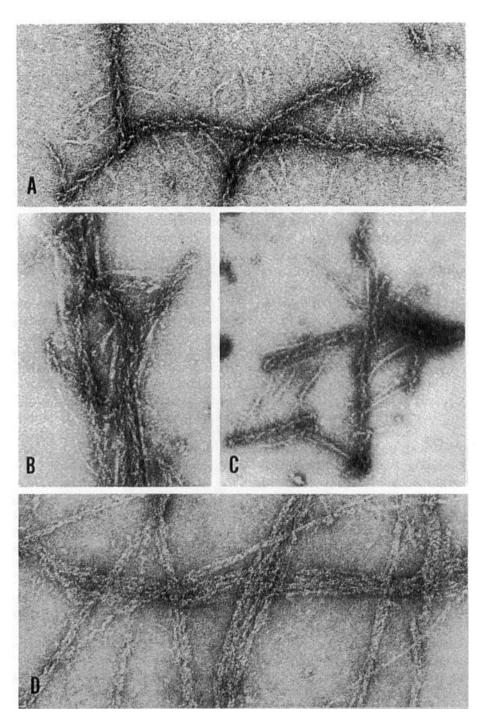


FIGURE 8. Complexes of various myosins with actin negatively stained with uranyl acetate. A. Physarum myosin and actin. The long tails of the myosin are seen trailing out from the decorated filaments. (Micrograph by V. T. Nachmias.) B. Human platelet myosin and actin. In several places thick filaments of myosin cross-link decorated actin filaments. C. Guinea pig granulocyte myosin and actin. Note the myosin cross-links. D. Acanthamoeba myosin and muscle actin. The filaments bind the myosin, but no arrowheads are visible. In the presence of Acanthamoeba myosin, the actin filaments are held in bundles. Magnification x 94,000.

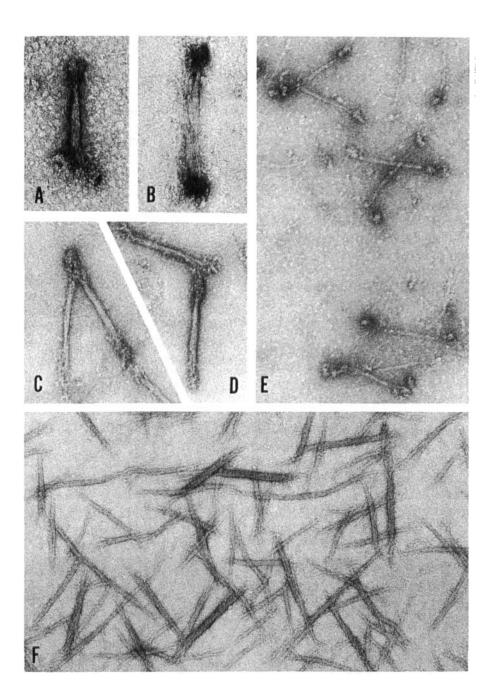


FIGURE 9. Myosin filaments negatively stained with uranyl acetate. A and B. Physarum myosin filaments formed in the presence of calcium. (Micrographs by V. T. Nachmias.) C and D. Human platelet myosin filaments. E. Guinea pig granulocyte myosin filaments formed in the presence of calcium. F. Short filamentous aggregates of human platelet myosin rod. Note the absence of the terminal projections compared with the filaments of the intact platelet myosin in C and D. (Micrograph by R. Niederman.) Magnification x 91,000.

Hatano and Tazawa¹⁴ prepared Physarum actomyosin by high ionic strength extraction and low ionic strength precipitation, then removed part of the actin from the myosin by ultracentrifugation in 0.5 M KCl with Mg⁺⁺ and ATP. The myosin remained in the supernatant but was contaminated by actin. Later, Hatano and Ohnuma 156 found that the contaminating actin could be precipitated with part of the myosin by dialysis at low ionic strength, and, although much of the myosin was lost in the precipitate, the purified Physarum myosin remaining in the supernatant appeared homogeneous by sedimentation velocity ultracentrifugation. Using gel electrophoresis, Nachmias found that Physarum myosin prepared by a modification of Hatano's method contains several impurities that could be separated from the myosin by gel filtration on 4% agarose. 152

Independently, Adelman and Taylor^{15,16} devised another method for preparing slime mold actomyosin using pyrophosphate extraction and ammonium sulfate fractionation. By column chromatography of the actomyosin on Sephadex G-200 and DEAE-cellulose, they obtained a highly purified preparation of Physarum myosin which was free of nucleic acid contamination and at least 75% pure by analytical ultracentrifugation. More rigorous analysis by gel electrophoresis has not been reported.

Both methods yield 5 to 10 mg of purified

Physarum myosin/100 g of starting material, corresponding to about 0.3% of the cell's protein. This is the lower limit of the quantity of myosin in Physarum, while estimates based on data of Adelman and Taylor¹⁶ for specific activities of the enzyme in crude homogenates and of purified enzyme suggest the true value is 8 to 10 times higher, or about 2 to 3% of the slime mold's total protein. Both groups estimate that there is at least a twofold weight excess of actin, corresponding to a 20-fold molar excess of actin over myosin in Physarum.

Using the sedimentation coefficient of 6.4S and a diffusion coefficient estimated by gel filtration, Adelman and Taylor¹⁶ calculated that the native molecular weight of Physarum myosin is about 460,000. By SDS gel electrophoresis of agarose purified Physarum myosin, Nachmias determined that the molecule consists of three classes of polypeptide chains: one of 240,000 daltons and two in the 12,000 to 15,000 dalton range. 151,169 While this follows the same general pattern of light and heavy chains found in other myosins, the Physarum myosin heavy chain is distinctly larger, and the light chains may be smaller than the corresponding polypeptides from other myosins.

Direct visualization of individual Physarum myosin molecules by electron microscopy¹⁷⁰ (Figure 10) shows that they resemble muscle

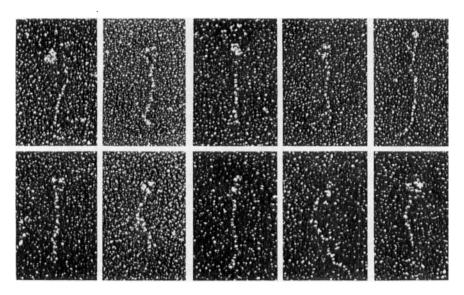


FIGURE 10. Individual Physarum myosin molecules contrasted by rotary shadowing. Magnification x 160,000. (From Hatano, S. and Takahashi, K., Structure of myosin A from the myxomycete plasmodium and its aggregation at low salt concentrations, J. Mechanochem. Cell Motility, 1, 7, 1971. With permission.)

myosin in size and shape, having an extended tail about 120 nm long with a globular region at one end. In some of the molecules, the globular region can be resolved into two separate "heads" about 11 nm in diameter.

The available data, therefore, are consistent with a two heavy chain model for the Physarum myosin molecule, although certain inconsistencies raise some doubts about this conclusion. If the molecule consists of two heavy chains with molecular weights of 240,000 and at least two light chains with molecular weights of 12,000 to 15,000, the native molecular weight must be over 500,000, which is greater than the value of 460,000 determined by Adelman and Taylor.

In spite of its overall physical similarity to striated muscle myosin, Physarum myosin differs from it significantly in being soluble in certain dilute buffers in which muscle myosin aggregates into insoluble bipolar filaments. Ultracentrifugation of purified Physarum myosin in dilute KCl solutions at neutral pH reveals only monomer and some small aggregates with sedimentation coefficients up to 15S. 16,156,170 In agreement with these solution studies, electron microscopy of Physarum mysoin in 0.05 M KCl alone reveals no visible aggregates.

Bipolar thick filaments of Physarum myosin were first observed by Hinssen¹⁷¹ in preparations of Physarum actomyosin aged in a "relaxing solution" containing Mg++ and ATP. Later, Nachmias found that addition of 1 mM CaCl₂ or 10 mM MgCl₂ to purified Physarum myosin in 0.05 M KCl results in the formation of short bipolar filaments up to 25 nm wide and 450 nm long (Figure 9). 152 In recent experiments with more highly purified Physarum myosin, filaments up to 2,000 nm long have been observed. 169 Like muscle myosin filaments formed in vitro, these aggregates of Physarum myosin have a bare central region with a fibrous substructure (undoubtedly due to the longitudinal alignment of the myosin tails) and tufted ends (corresponding to the globular head regions of the myosin). The actin binding sites are in the projections at the ends of the filaments, judging by the way the myosin aggregates can cross-link actin filaments in vitro^{151,172} (Figure 8A). Although Physarum contains a total of 1.2 mM Ca⁺⁺, 53 we do not know the free Ca++ concentration in the cytoplasm, making it difficult to relate these properties of the myosin to its state of aggregation in the living cell.

The amino acid composition of homogeneous Physarum myosin has not been reported, but Hatano and Ohnuma¹⁵⁶ found that their purified Physarum myosin lacked the amino acid cysteine. This finding is particularly remarkable because muscle myosin contains a number of cysteine residues, and two of these have been implicated in the active site of the ATPase. 173,174 The apparent absence of cysteine in Physarum myosin is hard to reconcile with the fact that sulfhydryl reagents (p-chloromercuribenzoate and N-ethyl maleimide) inhibit the ATPase activity of the enzyme.156 Of course, neither of these reagents is completely specific for cysteine, so other groups could have been affected in these experiments.

Physarum myosin catalyzes the hydrolysis of the terminal phosphate from ATP and at lower rates from ITP and GTP.16 ATPase activity is activated by Ca++ and inhibited by Mg++, but, unlike some other myosins, EDTA inhibits activity even in the presence of high concentrations of KCl. 16,156 This pattern of ATPase activity is shared by muscle myosin blocked in the S-1 sulfhydryl group. 173

In the original work on Physarum myosin, little 156 or no actin activation of low ionic strength Mg++ ATPase was found, but Nachmias 169 has now prepared Physarum myosin which is activated 4- to 6-fold by muscle actin. No quantitative details about this actin-myosin interaction are available, but, in contrast to Acanthamoeba, a cofactor protein (see below) may not be required for actin activation of this protozoal myosin.

Acanthamoeba Myosin 126,153,154

Acanthamoeba castellanii is a small, free-living soil amoeba which has been adapted to grow in liquid cultures. It contains the most unusual myosin yet discovered. This myosin is unique because it is a relatively small, globular ATPase which, nonetheless, is capable of cross-linking actin filaments and having its enzyme activity stimulated by actin. Because of its size and solubility at low ionic strength, it was initially missed in searches for myosin in this cell, but it was eventually identified by gel filtration of amoeba extracts. Similar small myosins have not been described in other cells but could have been missed because of their unusual properties.

Because the enzyme comprises only 0.3% of the amoeba's total protein, an elaborate procedure is obtain purified Acanthamoeba necessary to myosin. This involves ion exchange chromatography, ammonium sulfate fractionation, reversible binding to agarose beads, and hydroxyapatite chromatography. The purified enzyme consists of an approximately 1:1:1 molar ratio of three polypeptide chains with molecular weights of 140,000, 16,000, and 14,000 daltons. They account completely for the native molecular weight of the enzyme, about 180,000 daltons, estimated by gel filtration, which also shows that the native molecule is globular. The sedimentation coefficient of about 8S117 is also appropriate for a globular protein of this size. Acanthamoeba myosin is soluble and monomeric in both 0.5 and 0.1 M KCl, although at very low ionic strength it can aggregate or bind to some other component in the cell homogenate.117

The small size of Acanthamoeba myosin raises the question of whether the isolated enzyme is the product of the degradation of a larger native myosin. Although it is impossible to rule out absolutely such a possibility, a number of control experiments are all consistent with 180,000 daltons being the size of the native Acanthamoeba myosin.

The amino acid composition of the protein is remarkable because it bears no general resemblance to that of any other myosin or to that of any fragment of muscle myosin that has been examined. Like Physarum myosin, the amoeba myosin apparently lacks cysteine, an amino acid known to be important in the active site of skeletal muscle myosin. The amoeba myosin also lacks the methylated lysines and histidine found in some muscle myosins.

In spite of these major differences in physical chemical properties, the Acanthamoeba myosin and muscle myosin have almost identical ATPase activities under a wide variety of conditions, showing that the active site may be quite similar in spite of the overall dissimilarities. Specifically, activity is inhibited by Mg++, stimulated slightly by Ca** irrespective of the monovalent cations present, and stimulated maximally by EDTA in the presence of high concentrations of KCl.

Acanthamoeba myosin binds reversibly to muscle actin filaments. Electron microscopy shows that the bound myosin accentuates the periodicity

of the underlying actin filament (Figure 8D), but (probably due to its globular shape) the complex does not have any obvious polarity as do the typical arrowhead-shaped complexes formed by actin and other myosins. In the presence of Acanthamoeba myosin, the actin filaments are often aligned (in register) in parallel arrays. These clusters of actin filaments break down when the Acanthamoeba myosin is dissociated from the actin filaments by treatment with ATP, suggesting that the Acanthamoeba myosin forms cross-links between adjacent actin filaments.

Actin alone will not activate the Mg++ ATPase of the purified Acanthamoeba myosin, but, in the presence of another Acanthamoeba protein, called the cofactor, actin strongly activates ATPase activity. The cofactor is a new protein not previously described in muscle or other cells. Available data show that it is a globular protein with a molecular weight of about 100,000 daltons. The cofactor lacks ATPase activity and does not resemble any of the known components of the control system found in muscle or any fragment of muscle myosin. Preliminary experiments show that the maximal effect of the cofactor occurs when it is present in approximately equimolar amounts with the Acanthamoeba myosin. The concentration of actin also affects the resulting ATPase activity in a complicated manner, while the time course of the ATP hydrolysis suggests that the interaction of ATP with the three proteins is a cooperative process.

Using a figure of about 10% as an estimate of the fraction of the cell's protein which is actin, it is clear that there is a large molar excess of actin over myosin in Acanthamoeba, on the order of 100 to 1. If all the actin was polymerized into filaments, there would be about one myosin molecule for every 0.3 μ m of actin filament.

Myosin in Other Cells

The only convincing method now available for identifying myosin in nonmuscle cells is the direct isolation and characterization of the protein. Less satisfactory approaches are to isolate actomyosin, to identify thick myosin-like filaments by electron microscopy, or to demonstrate cross reaction of tissues with antibodies to myosin or actomyosin.

Actomyosin

Protein mixtures with certain properties of actomyosin from muscle (reviewed

TABLE 9

Actomyosin-like Proteins

A. Proven to contain actin or myosin Brain (cat, rat) ¹⁷⁷ Dictyostelium ⁴²	Purified actin +49 +43	Purified myosin					
Leukocytes ^{77,78} (horse, human,	+78 a	+76					
guinea pig)							
Physarum ^{6,8,14,15,178}	+13,16	+16,156					
Platelets ^{9,179}	+46,62	+147,148					
B. Not proven to contain actin or myosin	Separation of actin- and myosin- like fractions	Precipitation in dilute buffer	ATP reduces viscosity	Superpre- cipitation	Contractile threads	Charac- teristic ATPase	Antibody
Endothelial cells ^{120,180} (human)							+
Erythrocyte ¹⁸¹ membrane	+	+	+				
Mitochondria 182 (liver)	+		+	+	+	+	
Naegleria 1 8 3		+		+		+	
Nitella 184		·	+	·		*	
Nuclei 185 (calf thymus)	+		+	+	+	+	
Sarcoma cells ¹⁸⁷		+	+	+		+	
Spermatozoa ¹⁸⁸ (human)		+	+			·	
Leaf vascular ^{175,176} bundles (<i>Hydrilla</i> ,			+				

Poglazov)186 have been extracted from a number of cells (Table 9). Most frequently, it is found that ATP lowers the viscosity of these preparations (presumably due to dissociation of myosin and actin). Other properties shared with actin and myosin include ability to be separated into actinand myosin-like fractions, precipitation in dilute buffer, superprecipitation, formation of contractile threads, and ATPase activity responding to divalent cations, like actomyosin from muscle. All these properties together provide presumptive evidence for actomyosin, and in 5 cases cells which yield actomyosin-like protein mixtures have been proven to contain actin and myosin (Table 9). On the other hand, the properties may not be specific for actomyosin, and until the remaining preparations (Table 9) can be shown to contain actin or myosin by more rigorous criteria, such as direct isolation, peptide mapping, etc., these experiments must be interpreted cautiously. For example, ATP lowers the viscosity of plant extracts, 175 but the

pumpkin, tobacco)

ATPase in these preparations also hydrolyzed ADP (unlike myosin) and had a very low molecular weight by gel filtration, 176 suggesting that the enzyme is not myosin. Furthermore, later investigators were unable to confirm the original isolation of actomyosin from mitochondria. 176a

Myosin-like Thick Filaments

Filaments with the size and shape of myosin filaments have been observed in electron micrographs of several cells: Amoeba proteus, 189,189a Chaos carolinensis, 190 platelets, 100, 167, 191 and Saccamoeba sp., 192 as well as tunicate epidermal cells 193 and cultured fibroblasts 193a treated with cytochalasin B. 194 In the case of platelets and fibroblasts, these filaments are undoubtedly myosin, because myosin has been purified from these cells and shown to form similar filaments in vitro. In the other cases, their identity as myosin filaments is much less certain. Besides the simple observation of the morphology of these filaments,

two revealing tests would aid in their identification as myosin: (1) examination of their solubility in various concentrations of KCl195 and (2) testing for their ability to bind to actin filaments. 196

Antibodies

Antibodies have been prepared to myosin from striated muscle, 197 platelets, 147 and granulocytes, 76 and to actomyosin from smooth muscle¹⁸⁰ and platelets. 198 Providing that these antibodies to myosin can be shown to be specific (and this appears to be true in the case of antimuscle myosin, antigranulocyte myosin, and possibly some of the other antibodies), they can be used, in principle, to demonstrate the presence of myosin in other cells, either by immunohistochemical procedures or by more quantitative methods such as radioimmunoassay. 1982 The antiplatelet myosin has been used in this way to demonstrate a possible deficiency of myosin in platelets from patients with the hereditary disease Glanzman's thrombasthenia. 199

General Conclusions

foregoing discussion and the data summarized in Tables 6, 7, 8 and 9 prove beyond any doubt that myosin exists in many motile cells. All these cytoplasmic myosins share with muscle myosin the ability to cross-link actin filaments (Figure 8) and to have their Mg + ATPase activity stimulated by actin. Therefore, strong arguments can be made for their role in the transduction of chemical energy stored in ATP into force for movement (see section on Relation of Cytoplasmic Actin and Myosin to Cell Movement).

Is there any physiological significance to the wide variation in the measured rates of ATP hydrolysis by the various myosins (Tables 7 and 8)? In muscles, Barany has shown that both Ca⁺⁺ ATPase and actin-activated Mg** ATPase are more active in the myosins from more rapidly contracting muscles. 157 With the nonmuscle cells, no such correlation is possible now because the effects of factors such as assay conditions, enzyme impurity, or denaturation on the enzyme rate are not yet well investigated, and no standard assay for "contractility" in a nonmuscle cell is available.

Assay conditions are particularly crucial for measurements of actin activation (Table 8) because the rate of ATP hydrolysis is a sensitive function of actin concentration, ionic strength. and temperature. These parameters have been

examined carefully for the actin-muscle heavy meromyosin Mg⁺⁺ ATPase, and it was found that (1) the dependence of the rate on actin concentration can be described by simple Michaelis-Menten kinetics, 28 suggesting a direct physical interaction between the actin and myosin; (2) increasing the ionic strength inhibits the rate because of greater dissociation of the actin and myosin;28 and (3) the energy of activation is very high (28 kcal/mol).²⁰⁰ Two of these parameters have been investigated for a single cytoplasmic myosin. The actin activation of Acanthamoeba myosin Mg++ ATPase is strongly inhibited by increasing the ionic strength, but the rate is dependent on the actin concentration in a complicated way. 154 The influence of these factors (the actin concentration, ionic strength, and temperature) is illustrated in Table 8, which shows that some of the differences in the actin activated myosin ATPases can be accounted for by differences in assay conditions.

There is more uniformity in the interaction of these cytoplasmic myosins with actin in the absence of ATP, where they all bind to and can form cross-links between actin filaments. Usually the complex of myosin with actin has the appearance of polarized arrowheads, although no polarity is obvious in the Acanthamoeba myosin-actin complex.

In most cases the myosin self-assembles into bipolar thick filaments in dilute buffers, although some require divalent cations for assembly (Table 6; Figure 9A, B, and E). The bipolarity of these filaments is important because in vitro the crosslinked actin filaments are usually attached to opposite ends of the myosin filament (Figure 8B and C). This type of cross-link may also predominate in vivo, and it is probably not coincidental that the polarity of this type of actinmyosin cross-link is appropriate for a sliding filament mechanism of movement similar to that in striated muscle. In the case of the globular myosin from Acanthamoeba, a different type of cross-link is formed without the intervention of a long connecting piece composed of a myosin filament backbone, so adjacent actin filaments are held close together (Figure 8D).

Beyond these important functional properties, there are interesting differences and similarities in the physical and chemical properties of the myosins. All the myosins are large proteins composed of extraordinarily large polypeptides with

molecular weights of 140,000 to 240,000 daltons, and all have associated polypeptides of much lower molecular weight, known as light chains (Table 6). Although it is not known why myosins contain such large polypeptides, it may be because a large polypeptide is necessary to accommodate the functions of filament formation, hinge, and ATPase in a single molecule.26 Acanthamoeba myosin, which lacks a tail, has a correspondingly smaller heavy chain.

Acanthamoeba myosin is also unique in being composed of only a single heavy chain. Muscle myosin (and probably the other myosins listed in Table 6) consists of two heavy chains. While this bipartite structure is necessary for the formation of the coiled-coil tail of the myosin, it is not clear whether the two heads are necessary for contraction. However, it is known that one-headed myosin (prepared by limited proteolytic digestion) is capable of superprecipitation.201

It is indeed striking that all of the myosins have light chains. In vertebrate muscles some of the light chains are necessary for ATPase activity, and in molluscan muscle one light chain is necessary for Ca⁺⁺ modulated regulation of actin-myosin interaction. It has not yet been determined whether the light chains of cytoplasmic myosins are necessary for activity, although the absence of intrinsic regulatory activity indicates that none of them are comparable to the regulatory light chain of the molluscan myosins. Their universal presence even in the myosins from protozoa suggests that they must have some essential role in the force generating mechanism which is not presently appreciated.

LOCALIZATION OF CYTOPLASMIC **ACTIN AND MYOSIN** WITHIN CELLS

There is now an extensive morphological literature on various types of filaments within cells. In some cases these filaments have been identified as actin or myosin, but in most cases identification has not been reported. A detailed evaluation of these studies on cytoplasmic filaments is beyond the scope of this review, so we will concentrate on those cases where the filaments are known to be actin or myosin. Some of the material on this topic is discussed in the sections Other Methods of Identifying Actin, Myosin in Other Cells, and

Relation of Cytoplasmic Actin and Myosin to Cell Movement.

Actin

Ishikawa's heavy meromyosin labeling technique¹⁷ has now been widely used for the identification of actin filaments in situ (Table 5). The major drawback of this procedure is the need to glycerinate the cells. In some cells, including A canthamoeba ⁷⁵ and the intestinal epithelium, 17,38 the actin filaments are well preserved in their natural location after glycerol extraction, but in other cases the filaments do not survive glycerination. A rapid glycerination procedure has recently been described which may lessen this problem in some cases. 108 A second problem has been that in some cells more filaments are seen after treatment with heavy meromyosin than before (Table 5), raising the possibility that the heavy meromyosin is somehow influencing the extent and possibly the position of filament polymerization. This is, of course, possible, because studies with pure muscle actin have shown that myosin or heavy meromyosin promotes polymerization.202 Alternatively, the heavy meromyosin may simply stabilize preexisting actin filaments so that they are preserved by the fixation procedure used to prepare these specimens for electron microscopy. Regardless of the explanation for this effect of heavy meromyosin, the problem makes it mandatory that the presumed actin filaments be localized in routinely fixed cells and in glycerinated cells both with and without heavy meromyosin to be certain that their natural position has been identified. Once the actin filaments have been identified by heavy meromyosin binding in glycerinated cells, it is clearly advisable to establish their interrelationship with the other cytoplasmic components in unextracted cells where these features are preserved.

The immunofluorescent and fluorescein heavy meromyosin^{117a} techniques discussed above are useful for determining the general distribution of actin within cells, although the resolution in the light micrographs is inferior to that in electron micrographs. A possible advantage of these approaches is that they potentially could reveal the localization of monomers or small oligomers of actin which would be missed in electron micrographs. A serious problem with the antibodies. is the uncertainty about specificity.

A third approach is the isolation of various cell fractions under mild conditions and the determination of their actin (or myosin) content by direct isolation of the protein, 150 gel electrophoresis, 66,127 electron microscopy, 118 enzyme assays. 150 The disadvantage of this approach is the possibility that the natural distribution of actin might be altered during cell disruption or fractionation.

The results obtained with these three approaches show that although nonmuscle cells lack a highly organized contractile apparatus like that of striated muscle, their actin filaments are localized in certain regions. Except for one report suggesting the presence of actin in the nuclei of Physarum, 203 actin filaments are usually found in the cytoplasmic matrix or "ground substance" which surrounds the various membrane-bounded organelles. Although there are exceptions, most cells have some actin filaments in the "cortical" region just inside the plasma membrane (Table 5). These cortical filaments are sometimes extensive, and, because they exclude membranous organelles, this region frequently appears clear in the light microscope, giving rise to terms such as "hyaline zone" or "hyaline ectoplasm." A bundle of these cortical actin filaments usually extends into microvilli on the surface of cells, where they appear to support these thin processes.

The close proximity of these cortical actin filaments to the plasma membrane has suggested that they are attached to the inner surface of the plasma membrane. This appears to be true in the intestinal brush border38 and in Acanthamoeba,118,127 where it is possible to isolate the plasma membrane with actin filaments still attached (Figure 11). In stereo electron micrographs of isolated Acanthamoeba plasma membranes, the actin filaments appear to make direct physical contact with the cytoplasmic surface of the plasma membrane without a visible specialization at the attachment site.118 In the brush border is a dense plaque on the inner surface of the plasma membrane where the actin filaments attach. 204 The actin filaments of brush border have been decorated in situ with heavy meromyosin, and all the actin filaments appear to have the same polarity, with the arrowheads pointing away from the plasma membrane. This may also be true in Acanthamoeba, although it has been difficult to show unambiguously.117 This polarity is, of course, the same as the polarity of muscle actin relative to the Z-line¹⁸ and could have the same significance. Because the actin filaments can be removed from the Acanthamoeba plasma membranes by the gentle procedure of dialyzing against dilute buffer to depolymerize the actin, 118,127 it is clear that the actin is attached to, but not an integral part the membrane. Perdue has presented ultrastructural evidence for the interesting idea that actin filaments .may penetrate the plasma membrane of fibroblasts. 204 a

By morphological criteria alone, actin filaments (or filaments having the appearance of actin) appear to be attached to the plasma membrane in many other cells. 104,205,206 These membrane attachments undoubtedly account for the concentration of the actin filaments in the cell cortex. Although their function has not been proven, it is reasonable to suppose that at sites where the plasma membrane makes contact with other cells or with a substrate, the filaments associated with the membrane would serve as an anchor against which the contractile apparatus could exert force for movement. An exaggerated example of this arrangement is found in tissue culture cells where "stress fibers" or a "sheath" of actin filaments is found near the base of the cells and extends into cell processes.

It has recently been claimed that actomyosin is a component of red blood cell plasma membranes,²⁰⁸ but we think that this is an improper use of the term "actomyosin." The idea arose because proteins (originally called either "spectrin" or "tektin" with molecular weights similar to those of muscle actin and myosin can be extracted from these membranes with dilute buffers. Some of these preparations can form filaments resembling actin, 211,212 and others are reported to have ATPase activity.212 In these superficial ways, the mixtures are similar to actomyosin, but they have never been shown to have the properties specific for actin and myosin. Certain other properties, such as their solubility only in very dilute buffers212a and the molecular weights of the large polypeptides (about 250,000 daltons), are also inconsistent with the properties of the well characterized vertebrate actins and myosins.

In contrast to the work with the plasma membrane, little information is available about the possible interactions of actin and myosin with other cell fractions. Berl, Puszkin, and Niklas¹⁵⁰ have presented preliminary evidence that the actin

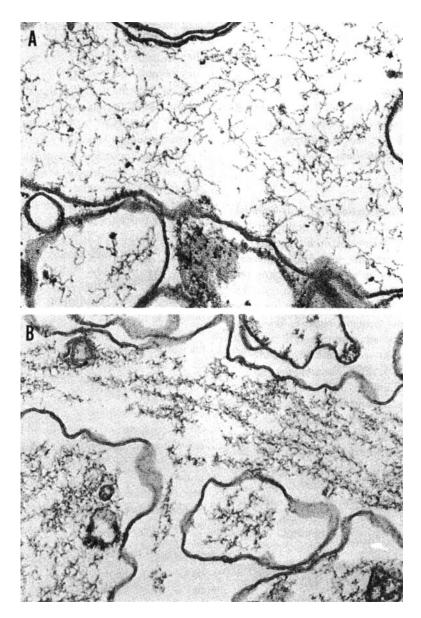


FIGURE 11. Micrographs of thin sections of isolated Acanthamoeba plasma membranes. A. Bare actin filaments are visible in this preparation treated with heavy meromyosin and pyrophosphate. B. Actin filaments decorated with heavy meromyosin. Polarized arrowheads are visible in some places. Magnification x 86,000.

of synaptosomes is associated with the synaptosomal membrane and that the myosin is associated with the synaptic vesicles. While this work cannot be evaluated in a definitive way until the experiments are described more completely, still the data presented are the first experimental support for the intriguing possibility (apparently first enunciated by Schmitt)²¹³ that intracellular transport could arise from interaction of complementary contractile proteins having different localizations.

In many cells bundles of parallel actin filaments can be found. In some cases the orientation of these bundles is clearly related to simple shortening movements, as in the contractile ring, and certain morphogenetic movements (which are discussed below).

In addition to these cortical filaments and

filament bundles, other actin filaments can be found throughout the cytoplasm of many cells, but their distribution and function have not been completely analyzed. Numerous ultrastructural studies on thin cytoplasmic filaments (sometimes referred to as microfilaments) have been published. Although many of these filaments are probably actin, this has not been proven, and the work will not be reviewed here.

Myosin Localization

Compared with the progress that is being made on the localization of cytoplasmic actin, little is known about the intracellular distribution of myosin in any nonmuscle cell. In most cells myosin filaments are either absent or not preserved by the fixation (as discussed above), so only actin filaments are usually seen. There are some apparent exceptions, though, because thick filaments similar to myosin filaments are regularly seen in thin sections of Amoeba proteus, 189 Chaos carolinesis, 190 and Saccamoeba sp. 192 These myosin-like filaments are usually associated with actin filaments (identified in the first two cells by heavy meromyosin binding), but their identity is still in question because myosin has not been isolated from these amoebas. In Amoeba and Chaos, difficulties with fixation have prevented correlation of the thick filament distribution with the streaming of the amoeba. In Saccamoeba the thick filaments are arranged in a pattern which is similar to the pattern of cytoplasmic stream-

Both Physarum and human platelets contain substantial amounts of myosin which can form thick filaments under suitable conditions (discussed above), although thick filaments are not usually seen in the cytoplasm. After glycerination, however, numerous filaments appear, some of which are similar to typical myosin filaments. 100,196 These thick filaments also have been observed in platelets after osmotic lysis 101 or other treatments.214 In both cases the thick filaments are usually enmeshed by numerous thin filaments which have been identified as actin by reaction with heavy meromyosin. The heavy meromyosin decoration reveals an additional fact, however, which is that a number of thin filaments with widths between 2 and 10 nm do not react with heavy meromyosin. 100,196 These undecorated thin filaments can cross connect actin filaments and, on the basis of these connections

and their failure to bind heavy meromyosin, are thought to be small myosin aggregates. This is the first indication that intracellular myosin filaments may be much smaller than those made in vitro from purified myosin. If this is true, these small myosin aggregates will have to be identified using immunological techniques because they are otherwise indistinguishable from the actin filaments.

Another approach used to localize myosin is the use of antisera prepared against crude platelet actomyosin¹⁴⁷ or smooth muscle actomyosin. 180 These antisera are specific for some component in the actomyosins, although it has not been proven to be myosin. By light²¹⁵ or electron microscopy, 198 the antisera appear to bind to some component on the outer surfaces of platelets 198,215 and other cells.216 This binding can be blocked by absorption of the antismooth muscle actomyosin with muscle myosin or heavy meromyosin²¹⁷ or by absorption of the antiplatelet actomyosin with platelet actomyosin. 198 The platelet actomyosin antibodies also react with some component in the cytoplasm of platelets 198 (presumably the actin and myosin which have been identified there by other methods) as well as the cytoplasm of a variety of other cells.217a Smooth muscle actomyosin antibodies also bind to a component in the mesangial cells of the renal glomerulus,218 where actin and myosin have not been identified by other means.

The binding of these antibodies to cytoplasmic components is expected from other results, but the binding to the outer surfaces of cells comes as a surprise. Independent proof that the outer surface component is actin or myosin will have to be obtained by other means, such as direct isolation, and the possibility that the apparent localization is an artifact caused by damage to the cells will have to be ruled out. 120

These approaches still leave us with little detailed information about the distribution of myosin within cells. This information will have to be obtained before we have a clear picture of how actin-myosin interaction develops the motile force.

CONTROL MECHANISMS

The complex and varied movements of living cells obviously must be regulated carefully, presumably by factors controlling the interaction of their contractile proteins. Extensive informa-

TABLE 11 Interaction of Troponin-tropomyosin with Various Myosins

Muscle actin activated Mg ⁺⁺ ATPase (µmol/min/mg)
--

	Without troponin-tropomyosin		With troponin-tropomyosin	
Type of myosin	EGTA	Ca ⁺⁺	EGTA	Ca [↔]
Acanthamoeba ²²¹ Guinea pig granulocyte ⁷⁶ Human platelet ⁴⁸ Rabbit muscle subfragment-1 ²²¹	1.13 0.0075 0.07 3.70	1.21 0.0074 0.07 4.52	0.23 0.0028 0.03 0.39	0.35 0.0088 0.08 5.50

weight ratio of 1 to 2 when muscle actin was substituted for Acanthamoeba actin. Although direct tests for the binding of troponintropomyosin to Acanthamoeba actin were not done, it is likely that the troponin-tropomyosin acts by binding to Acanthamoeba actin, as it is known to bind muscle actin,220 and does not interact directly with myosin.

Similar experiments have been reported with two other cytoplasmic actins (Table 10). Muscle troponin-tropomyosin makes the platelet actin activation of the Mg++ ATPase of muscle heavy meromyosin dependent on Ca⁺⁺. 48 The complex of Physarum actin and muscle myosin superprecipitates at low ionic strength with Mg⁺⁺ and ATP in the presence or absence of Ca⁺⁺, but addition of muscle troponin-tropomyosin makes superprecipitation dependent on the presence of Ca⁺⁺.219 Tanaka and Hatano²¹⁹ also showed by viscometry, flow birefringence, and analytical ultracentrifugation that the muscle troponintropomyosin binds to the actin. Together, these experiments show that cytoplasmic actin filaments have binding sites for muscle troponintropomyosin and that Ca++ can regulate the interaction of these hybrid filaments with muscle myosin.

Cytoplasmic myosins are also influenced by muscle troponin-tropomyosin (Table 11). The Mg ATPase of platelet and granulocyte myosin is stimulated by muscle actin, and the rate is the same with or without Ca++,48,76 showing that these purified cytoplasmic myosins lack intrinsic Ca**-sensitive regulatory activity such as that found in molluscan myosins. When muscle troponin-tropomyosin is added to the assay, actinactivation occurs only with Ca⁺⁺, showing that these myosins recognize the Ca⁺⁺ modulated inhibition to actin-myosin interaction produced by troponin-tropomyosin.

Acanthamoeba myosin requires the presence of the cofactor protein for actin to activate its Mg ATPase, and the resulting activity is not affected by Ca⁺⁺. Thus, neither the myosin nor the cofactor is influenced by Ca**. When muscle troponin-tropomyosin is added to the assay, it inhibits, as expected, ATPase activity in the absence of Ca⁺⁺, but unexpectedly it also inhibits ATPase activity in the presence of Ca⁺⁺. Inhibition of actomyosin ATPase activity by troponintropomyosin in the presence of Ca⁺⁺ is unique among myosins and suggests that troponintropomyosin of the muscle type must not exist in the amoeba, or it would block actin-myosin activity permanently. To investigate this phenomenon further, Pollard and co-workers² tested combinations of purified tropomyosin and purified troponin components on the ATPase activity of the hybrid system consisting of muscle actin with Acanthamoeba myosin and cofactor and found that tropomyosin, troponin-I, and troponin-C all behave normally, but troponin-T does not. The relation of these results to the control of amoeboid movement is not understood.

Calcium Dependent Movements

Even before it was known that actin and myosin are present in nonmuscle cells, it was thought that Ca⁺⁺ might participate in the regulation of cell motility. Early experimental support for this idea came from the injection of various salts into giant amoebas or eggs of marine invertebrates. Dilute Catt solutions caused localized "precipitation" (contraction?) of the cytoplasm at the site of injection.222

Hoffman-Berling and co-workers^{223,224} tested

tion (briefly reviewed above) is now available about the Ca** modulated control of actin-myosin interaction in muscle. However, the data available on the factors controlling cell motility and the activity of cytoplasmic actin and myosin are so fragmentary that one cannot be certain of even the general aspects of the control mechanism in any nonmuscle cell. Several experiments suggest that some cells have Ca⁺⁺ modulated regulatory systems as does muscle, while other experiments suggest that different mechanisms might be involved.

The relevant experiments fall into five categories:

- 1. Tests showing that the cytoplasmic contractile proteins can interact normally (or sometimes abnormally) with the regulatory proteins troponin-tropomyosin from muscle.
- 2. Tests for Ca** dependence in various motile processes. In at least two organisms, Physarum and Chaos, motile processes which may well be caused by actin and myosin are dependent on Ca⁺⁺.
- 3. Direct search for control proteins. Tropomyosin has been isolated from platelets, electric organ, and brain, and extracts of Physarum and platelets contain factors which confer Ca dependence on the superprecipitation or Mg⁺⁺ ATPase of actomyosin.
- 4. Investigation of intracellular localization and movements of Ca⁺⁺. In analogy with muscle, the guiding hypothesis is that movement is dependent on Ca⁺⁺ and that Ca⁺⁺ levels are regulated by Ca** sequestering membranes.

5. Investigation of control mechanisms unique to cytoplasmic contractility. These may include regulatory proteins different from troponin-tropomyosin, such as cofactor protein from Acanthamoeba, and regulation by the cell of the disposition of contractile proteins.

Interaction of Muscle Regulatory Proteins with Cytoplasmic Actin and Myosin

Once purified preparations of cytoplasmic contractile proteins were available and it was known that they would form functional hybrids with complementary muscle proteins, it was interesting to know whether they could also interact with the control proteins from muscle. The first experiments were carried out by Eisenberg and Weihing,96 who examined hybrid complexes of Acanthamoeba actin with muscle troponin-tropomyosin. Like pure muscle actin, Acanthamoeba actin by itself activates the Mg ATPase of muscle heavy meromyosin in both the presence and absence of Ca++. Addition of muscle troponin-tropomyosin to a mixture of Acanthamoeba actin and muscle heavy meromyosin made the Mg++ ATPase dependent on the presence of trace amounts of Ca⁺⁺ (Table 10). A similar effect is noted with muscle actin and corresponds, in a test tube, to the regulatory function of troponin-tropomyosin in muscle, where it allows actin-myosin interaction only in the presence of Ca⁺⁺. The maximum effect of troponin-tropomyosin occurs at a weight ratio of 1 mg troponin-tropomyosin to 3 mg of Acanthamoeba actin, which is similar to the

TABLE 10 Interaction of Troponin-tropomyosin with Various Actins

		Muscl	Muscle heavy meromyosin Mg ⁺⁺ ATPase (μmol/min/mg)			
		Without troponin-tropomyosin		With troponin-tropomyosin		
Type of actin	Temp. (°C)	EGTA	Ca [↔]	EGTA	Ca [↔]	
None ^{9 6}	25	0.03	0.03	_	_	
Acanthamoeba ^{9 6} (0.2 mg/ml)	25	0.15	0.15	0.04	0.44	
Human platelet ⁴⁸ (0.2 mg/ml)	37	1.40	1.49	0.32	1.13	
Rabbit muscle ^{9 6} (0.2 mg/ml)	25	0.67	0.64	0.04	0.54	
Physarum ²¹⁹						
(+ muscle myosin)		Rapid superprecipitation	Rapid superprecipitation	Slow superprecipitation	Rapid superprecipitation	

the effect of "relaxing grana" (vesicles isolated from muscle sarcoplasmic reticulum or from cultured fibroblasts by identical methods) on ATPinduced contraction of glycerinated cell models. The relaxing grana blocked contraction. Because it was known that the muscle-relaxing grana actively sequester Ca⁺⁺ and that their effect on cell model contraction could be overcome by added Ca⁺⁺, it was reasonable to postulate, as Hoffman-Berling did, that changes in Catt concentration help regulate movement in the intact cell. However, as there was no direct measurement of the free Ca concentration in these experiments, the interpretation is uncertain.

More recent work has implicated Ca" in the control of movement in Physarum, in which actin, myosin, and factors resembling troponintropomyosin are undoubtedly present. Hatano²²⁵ treated Physarum with caffeine, which fragmented the plasmodium into 100 µm wide spheres limited by a plasma membrane. Streaming of the cytoplasm, assessed directly by light microscopy, occurred only when the external Ca concentration was greater than 10^{-7} M. The simplest interpretation of the experiment is that caffeine renders the plasma membrane permeable to Ca⁺⁺ so that changes in the external Ca⁺⁺ concentration can regulate the interaction of the contractile proteins. This interpretation has not been proven; however, there is a precedent for caffeine affecting membranes. In muscle caffeine appears to influence the influx and efflux of and the release of Ca++ from the sarcoplasmic reticulum.²²⁸ Caffeine may also inhibit phosphodiesterase (as it does in many other cells²²⁶), which should increase the concentration of cyclic AMP. In an unrelated cellular slime mold, cyclic AMP stimulates the release of Ca" from the organism.229

In a series of important experiments, Taylor and co-workers have shown that streaming in cell-free extracts of the giant amoeba, Chaos carolinensis, is dependent on traces of Ca⁺⁺.230 The absence of a plasma membrane makes the manipulation of the ionic environment of the cytoplasm simple, and the lifelike movement of the extracts reassures one that normal cytoplasmic movements are being tested. The threshold Catt concentration for movement is $7 \times 10^{-7} M$, and, as the Ca⁺⁺ concentration is increased up to about 5×10^{-3} M, the average rate of contraction increases in parallel (Figure 12). At the threshold

of Catt concentration, with Mgt ATP in the bathing medium, the cell extract extends pseudopods of naked cytoplasm closely resembling the membrane-limited pseudopods of the intact cell. Actin²³¹ and myosin-like thick filaments 190,231 have been identified in Chaos, but nothing is known about its control proteins or the mechanism by which Catt regulates the movement.

Certain movements of intact cells are dependent on Catt in the external medium. Thus, fibroblast locomotion^{231a} and leukocyte locomotion and phagocytosis^{232,233} can be reversibly inhibited by removal of external Catt. However, it is not clear whether changes in the external Catt concentration are affecting the contractile apparatus. Furthermore, these effects are not entirely specific for Catt because they can often be duplicated by removal of Mg++.

As an aside, it is important to note that the simple observation of a Ca++-sensitive movement is insufficient evidence to conclude that the movement is caused by actomyosin. Calcium-sensitive movement is observed in the spasmoneme of certain peritrichous ciliates. 2,234,235 organelle is contracted in 10⁻⁶ M Ca⁺⁺ and relaxes in 10⁻⁸ M Ca⁺⁺. These changes can be repeated over and over again by simple changes of the Ca⁺⁺ concentration without the need for any source of energy such as ATP, although addition of Ca ATP causes repetitive cycles of contraction and relaxation. The solubility and elastic properties of the spasmoneme, which resemble those of rubber instead of muscle, show that the only property this system shares with actomyosin is its sensitivity to Ca⁺⁺.2

Regulatory Proteins from Nonmuscle Cells

If nonmuscle cells have a Catt regulated contractile mechanism, whether in the form of troponin-tropomyosin (or other new proteins) or integrated into the myosin as in mollusc muscle, one should be able to demonstrate that crude cytoplasmic actomyosin has low ionic strength Mg ATPase activity (or superprecipitation) influenced by Ca⁺⁺. This has been done in a few cases, as described below. Once this regulatory, activity has been identified, the factors involved must be isolated and then recombined with purified actin and myosin to demonstrate their function. Experiments of this type have not been completed, although several cytoplasmic tropomyosins have been purified.

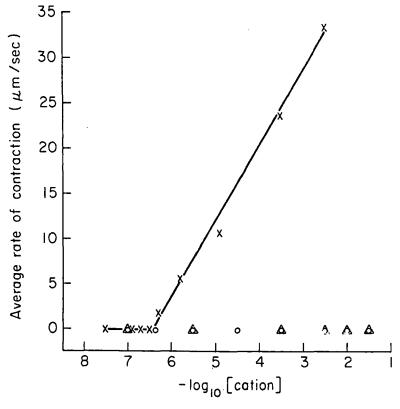


FIGURE 12. The effect of various calcium concentrations on the rate of contraction of isolated cytoplasm from Chaos carolinensis. (Unpublished data of Taylor, D. L., Condeelis, J. S., Moore, P. L., and Allen, R. D.)

Calcium-regulated Crude Actomyosin

It has apparently been difficult in many cases to show that the activity of crude cytoplasmic actomyosins is regulated by Ca++,78 although Cohen and Cohen²³⁶ have convincing data on a preparation of platelet actomyosin whose Mg ATPase is stimulated by increasing the free Ca++ concentration from 10^{-7} to 10^{-6} M (Figure 13). The regulatory components are not located on the myosin because the Mg++ ATPase of purified platelet myosin activated by actin free of regulatory proteins is not dependent on Ca⁺⁺. 48,236a The regulatory proteins are presumably on the actin filament because addition of excess purified actin to the crude actomyosin eliminates Catt dependence of the actomyosin ATPase, presumably because the purified actin competes³⁵ with the endogenous actin which contains the regulatory components. The nature of these regulatory components is discussed below.

Shibata and co-workers⁷⁸ found that calcium stimulates the superprecipitation of crude actomyosin from horse leucocytes. Half the maximal

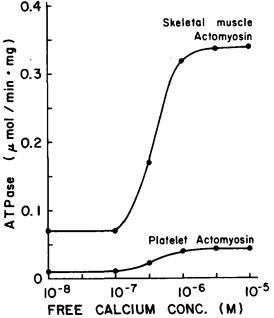


FIGURE 13. The influence of calcium concentration on the Mg++ ATPase activity of muscle and human platelet actomyosin. (Drawn from Cohn, I. and Cohen, C., A tropomyosin-like protein from platelets, J. Mol. Biol., 68, 383, 1972.)

TABLE 12

Properties of Tropomyosins

Muscle tropomyosins	Subunit composition	Paracrystal period	% α-helix
1. Vertebrate skeletal (rabbit, chicken) ^{2 3 7}	2 x 35,000	39.5 nm (Mg ⁺⁺)	~100%
2. Vertebrate cardiac (sheep, ox) ^{238,239}	2 x 35,000	40 nm(Mg ⁺⁺)	>95%
3. Vertebrate smooth (chicken) ^{238,239}	2 x 33,000	40 nm (Mg ⁺⁺)	>95%
4. Crustacean striated (crayfish) ^{2 3 8,2 3 9}	? x 33,000	40 nm (isoelectric precipitation)	>95%
5. Molluscan adductor (oyster) ^{2 3 8}	?	40 nm (isoelectric precipitation)	>95%
Cytoplasmic tropomyosins			
1. Vertebrate platelet (human) ^{2 3 6}	? x 30,000	34.3 nm (Mg ⁺⁺)	\sim 90%
2. Vertebrate brain (chick embryo) ^{2 4 0}	? x 30,000	34 nm (Mg ⁺⁺)	\sim 90%
3. Electric organ (Torpedo and Electrophorus electricus) ^{2 4 0 2}	? x 35,000	40 nm (Mg ⁺⁺)	>90%

effect occurred at a Ca⁺⁺ concentration of 10⁻⁶ M. These results are consistent with a Ca⁺⁺ modulated control mechanism, but no experiments on leucocytes have been reported which reveal the factors involved.

Isolation of Regulatory Proteins

Tropomyosin has been purified from platelets, electric organs, and brain and investigated in some detail (Table 12). Proteins with some properties of troponin have been found in *Physarum* and platelets, but they have not been extensively studied to date, leaving major questions to be answered in this area.

Tropomyosin

Cohen and Cohen²³⁶ isolated tropomyosin from an alcohol-ether extract of platelets by KCl extraction, boiling (which denatures most other proteins); isoelectric precipitation, and preparative gel electrophoresis in concentrated urea. The resulting platelet tropomyosin is homogeneous by analytical gel electrophoresis. Like muscle tropomyosin, platelet tropomyosin is over 90% alphahelical and contains many acidic amino acids and no proline. The subunit molecular weight of platelet tropomyosin is 30,000 daltons, and it forms paracrystals in the presence of Mg⁺⁺ which have a periodicity of 34 nm (Figure 14). Both the molecular weight and paracrystal periodicity are about 15% less than those of muscle tropomyosins isolated from various sources (Table 12). Given the lower molecular weight, the shorter periodicity of the paracrystals is expected, because in muscle

tropomyosin paracrystals, the spacing is determined by the length of the tropomyosin molecule. A 5,000 dalton reduction in subunit molecular weight should lead to the observed 6 nm reduction in paracrystal periodicity. The morphology of these paracrystals and the other physical and chemical data are all consistent with a two stranded coiled-coil structure (like muscle tropomyosin) for the native platelet tropomyosin. Studies on the function of platelet tropomyosin were not carried out, but it was observed that the tropomyosin was present in the platelet actomyosin, presumably because it binds to the platelet actin.

Fine and co-workers²⁴⁰ have isolated tropomyosin from embryonic chick brain using a modification of the platelet tropomyosin purification procedure. Gel electrophoresis in sodium dodecyl sulfate showed that the brain tropomyosin is at least 90% pure and has a molecular weight of 30,000 daltons. As expected, the brain tropomyosin paracrystals have a periodicity of about 34 nm (Figure 14), and the molecule is largely alpha-helical. Tryptic peptide maps of chick brain tropomyosin labeled with 125 I show an overall similarity to, but some differences from, chick muscle tropomyosin. Brain tropomyosin binds to muscle actin filaments and sediments with them in the ultracentrifuge. It interacts with muscle actin and troponin to form a complex whose activation of muscle myosin Mg ATPase is regulated by Ca⁺⁺. The apparently normal function of this hybrid complex is particularly remarkable because the brain tropomyosin, due to its

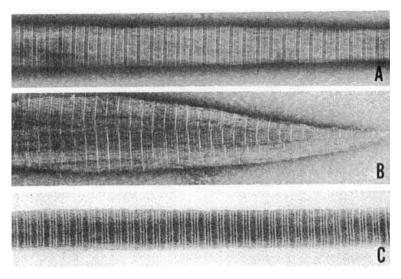


FIGURE 14. Electron micrographs of magnesium paracrystals of tropomyosins, negatively stained with uranyl acetate. Magnification x 86,000. A. Muscle tropomyosin (micrograph provided by I. Cohen and C. Cohen). B. Platelet tropomyosin (micrograph provided by I. Cohen and C. Cohen). C. Chick brain tropomyosin (micrograph provided by R. Fine).

shorter length, must interact with six rather than the usual seven actin monomers in the actin filament.

Tropomyosin isolated from electric organ of Torpedo and Electrophorus electricus has a molecular weight of 35,000 daltons and a paracrystal period of 40 nm,240a setting it apart from platelet and brain tropomyosin (Table 12). This resemblance to muscle tropomyosin may be related to the development of the electric organ from modified muscle cells.

Physarum Troponin-tropomyosin-like Activity

Experiments by Tanaka and Hatano²¹⁹ show that extracts of Physarum contain factors which behave like muscle troponin-tropomyosin. The slime mold was extracted with 0.05 M KCl and particulate material removed by centrifugation. Muscle actin and myosin (free of troponin-tropomyosin) were then added to the extract, in which they precipitated due to the low ionic strength. The precipitated muscle actomyosin and adhering material were collected by centrifugation. Prior to this treatment, the muscle actomyosin could superprecipitate in both the presence and absence of Ca⁺⁺. After exposure to the Physarum extract, superprecipitation became dependent on the presence of Ca⁺⁺. Addition of muscle troponin-tropoactomyosin superprecipitation is a specific test for troponin-tropomyosin or whether the effect of the Physarum extract was due to other causes.

myosin would have the same effect on superprecipitation of pure muscle actin and myosin, so it seems that the slime mold must contain the functional equivalent of troponin-tropomyosin, although the molecular basis of this activity is not yet known. One perplexing aspect of these experiments is that *Physarum* actomyosin lacks any Ca dependence for superprecipitation, raising the question of whether Ca⁺⁺ dependence of muscle

Platelet Troponin-like Components

As discussed above, it appears that platelet actomyosin contains regulatory components which are bound to the actin filaments. These have not been proven to be troponin, but Cohen, Kaminski, and deVries^{2 3 6 a} have extracted actin from an acetone powder of platelet actomyosin and found that in addition to actin it contains tropomyosin and three polypeptides with molecular weights of 36,000, 18,000, and 14,000 daltons. Activation of muscle myosin Mg** ATPase by this mixture-of proteins is inhibited 50% by addition of EGTA, suggesting that these peptides are related to troponin. Thorens, Schaub, and Lüscher²⁴¹ used completely different procedures to isolate a mixture of proteins from platelets which can inhibit the Mg ATPase of platelet or muscle actomyosin

up to 40% in the absence of Ca⁺⁺. Further fractionation and characterization of the proteins present in these preparations will be necessary to determine whether any of them is a component of the regulatory system.

Investigation of Intracellular Localization and Movements of Ca⁺⁺

If regulation of contraction in nonmuscle cells is analogous to regulation in muscle, then we would expect to find intracellular sequestration of Ca⁺⁺ analogous to sequestration by the sarcoplasmic reticulum, and, furthermore, we should expect to find that Ca⁺⁺ is released just before contraction occurs. Both of these expectations have been realized. Calcium sequestering vesicles have been identified in several cells known to contain actin and myosin, but Ca⁺⁺ release has been studied only in Spirostomum, which may not have an actomyosin contractile apparatus.

In the case of giant amoebas, which contain thin filaments which bind heavy meromy osin 115, and thick filaments which look like myosin, 189-190 direct injection of sodium alizarin sulfonate (a Ca⁺⁺ precipitant which turns red when combined with Ca⁺⁺)^{2 2 2} or glyoxal-bis-(2-hydroxyanil)242 (a dye which turns red or purple with a number of cations including Ca⁺⁺, but whose Ca⁺⁺ complex specifically resists decolorization by alcoholic Na₂CO₃-KCN) results either in the localized formation of red precipitates in the cytoplasm, where the cells attempt to extend a pseudopod (alizarin), or in the formation of red granules or bands in the anterior and middle region of the cell (glyoxal). In the case of the latter dye, only randomly oriented dye granules were seen in rounded cells, but in moving cells the dye is found in regions which are usually active in pseudopod extension. The results suggest that Ca** could be released into the cytoplasm at the site of pseudopod formation.

Ettienne²⁴³ demonstrated directly that release of Ca⁺⁺ precedes the onset of contraction in the ciliate Spirostomum. The dye aequorin, which emits light when it binds to Ca^{**}, was injected into the cell, which was then induced to contract by an electric current. Contraction begins when the light intensity has peaked, showing that an increase in the concentration of free Ca** precedes the onset of contraction. Relaxation occurs when the emitted light intensity (and presumably the Ca** concentration) drops. The Ca** released into the

cytoplasm comes from an internal store, because placing the cell in a Ca⁺⁺-free medium does not alter the contractile response or the emission of light from aequorin. Calcium oxalate precipitates enclosed in vesicles were identified in electron micrographs of the organism, 243 and these are close to a cortical layer of thin filaments. Osborn²⁴⁴ applied the electron microprobe with signal averager to 2-\mu thick sections of the cortical region of the organism and found that the calcium signal was most intense over the thin filaments, a result which is in general agreement with Ettienne's electron microscope studies. Lehman and Rebhun concluded from ultrastructural investigations of the organism that it was most likely the thin filaments (rather than the microtubules) whose orientation could be correlated best with contraction of the organism. 245 All these data suggest that in Spirostomum the release of Ca** from intracellular stores activates a filamentous contractile apparatus, but further experiments are necessary to determine whether the contractile apparatus is actomyosin or related to the Vorticella spasmoneme.246

Intracellular membranous vesicles which may sequester Ca⁺⁺ are present in cells besides Spirostomum. In Physarum, these were identified by incubating the organism in oxalate and showing that precipitates, presumably composed of calcium oxalate, accumulated within the vesicles. 247 Microprobe analysis of the precipitates directly demonstrates that the precipitates contain Ca (and small amounts of K). 248 The formation of precipitate requires the presence of ATP and is inhibited by Salyrgan, a sulfhydryl inhibitor.247 Similar vesicles can be identified in Amoeba proteus, Chaos carolinensis, 249 and Carchesium. 250

A few studies are available which seem to show that membranes which accumulate Ca** in vitro can be prepared from various nonmuscle cells. As mentioned earlier, Hoffman-Berling and co-workers^{223,224} prepared "relaxing grana" from cultured fibroblasts by the same method which they used to prepare fragments of sarcoplasmic reticulum from muscle. The fibroblast preparation inhibited ATP-induced contraction of glycerinated cells, and this inhibition could be reversed by addition of Ca**. Hence, the inhibition was presumed to be due to removal of free Ca** from the medium. However, direct measurements of Ca uptake were not performed, and, therefore, the data are difficult to interpret unambiguously.

Calcium uptake has been measured directly using membranes isolated from platelets. A vesicular fraction, free of mitochrondria, granules, and dense bodies, was first isolated by Statland et al. 251 by sucrose density gradient centrifugation of the 14,000 to 100,000 x g fraction. More recently Robblee et al.252 obtained vesicles of similar purity simply by collecting the fraction sedimenting between 14,000 to 40,000 x g. Under optimal conditions (in the presence of ATP, oxalate, Mg++, pH 7), the vesicles accumulate up to 0.2 to 0.4 µmol Ca⁺⁺/mg of protein, corresponding to a 500-fold greater concentration of Ca** within the vesicles as compared to the medium. Electrondense precipitates, presumably corresponding to precipitates of calcium oxalate, can be seen in electron micrographs of the vesicles. Based on comparision with cytochemical and biochemical studies of platelets, Statland et al. 251 postulated that their preparations were fragments of the surface and canalicular membranes of the platelet "which function as a platelet sarcoplasmic reticulum." Both laboratories observed that ADP inhibited Ca** uptake, which is particularly interesting because ADP is one of many factors which induces platelet aggregation.

The uptake of Ca⁺⁺ by mitochondria is well known, 253 and reports have appeared showing that intact Ehrlich ascites tumor cells accumulate Ca++ and that this uptake is dependent on the presence of substrates which can be oxidized by mitochondria.254 It is not clear that these effects can be related to contraction in these cells. Indeed, Ca⁺⁺ affects so many processes^{2 5 5} that it is clear that very careful work will be required to disentangle its possible direct effects on-contractility in motile cells from other effects unrelated to movement.

Unique Control Mechanisms

Despite the growing evidence that Ca⁺⁺ together. with troponin-tropomyosin- like proteins may regulate cell motility, two lines of experimental work and some theoretical arguments suggest that additional factors may be involved. The fact that myosin from molluscs regulates its own interaction with actin³⁴ establishes a precedent for a similar control mechanism in other cells. Myosin-based Ca**-sensitive regulation of actin-myosin interaction has been looked for with purified myosins from Acanthoamoeba, human platelets, and granulocytes (Table 11), but none was found.

Either these myosins normally lack this regulatory activity, or the regulatory activity was lost during the purification of the myosins, or the assay conditions were inappropriate. Nonmuscle cells of molluses are the obvious place to look for a self-regulated cytoplasmic myosin, although it might also be present in other systems.

The presence of the cofactor protein in Acanthamoeba shows that in some cells proteins different from troponin-tropomyosin may affect interaction of actin and myosin. 154 The limited data on the cofactor protein show that actin activation of the Acanthoamoeba myosin Mg** ATPase requires the presence of the cofactor. Because this is the ATPase activity most likely to be related to cell movement, the cofactor is in a position to turn the system on or off. Unfortunately, there is no information on how the cofactor might be added to or removed from the actin and myosin in the cell or, alternatively, how the activity of the cofactor might be turned on or off. At least Ca⁺⁺ does not seem to play a role. 221

It is likely that factors besides Catt-sensitive control proteins must operate in control of cell motility. In striated muscle the regular array of actin and myosin filaments keeps the actin and myosin close together and in a favorable geometric relationship for interaction so that a simple Ca**controlled block to actin-myosin interaction is sufficient to regulate the system. In cells with less organized contractile elements, presumably consisting of actin filaments and associated myosin, additional controls must also be exerted over the spatial and temporal assembly of the contractile elements. Essentially nothing is known about the factors influencing the disposition of the cytoplasmic contractile proteins within any cell, although there are striking examples that such controls must exist.

One example of the control which cells have over the disposition of their actin is the rapid formation, contraction, and dissolution of the "contractile ring" in the cleavage furrow of dividing cells (described in greater detail below). 256 Another example is the formation of an "acrosomal process" on starfish sperm113 when they contact the egg. This process is up to 90 μ m long and contains a bundle of actin filaments which are assembled from some precursor (possibly actin monomers) within a few seconds. Similarly in platelets, actin filaments do not appear until platelets have aggregated. 167 In

these examples it seems that actin is poised on the verge of polymerization but is restrained by unknown factors until its polymerization is triggered. However, recognition that the presence of mitotic apparatus, the presence of an egg, and platelet aggregation somehow influence actin polymerization has not revealed the molecular events regulating the polymerization.

RELATION OF CYTOPLASMIC ACTIN AND MYOSIN TO CELL MOVEMENT

At the present time, there is no direct experimental proof that actin and myosin generate the force for cell motility, although a large body of circumstantial evidence supports this appealing idea.

Comparative Arguments

In the first place, the numerous properties shared by muscle and cytoplasmic actins and myosins argue for a common force generating mechanism. Recall that the cycle of actin and myosin interaction which generates force in muscle is thought to consist of at least four steps: 22,145 (1) ATP hydrolysis by myosin, (2) dissociation of the products of ATP hydrolysis upon binding actin to myosin, (3) sliding movement, and (4) dissociation of actin from myosin by the rebinding of ATP to the myosin. It is striking that the cytoplasmic actins and myosins can carry out these four steps, although it is not known whether such a sequence actually occurs in any nonmuscle cell. (1) Cytoplasmic myosins can ATP. (2) Actin stimulates ATPhydrolyze hydrolysis by cytoplasmic myosin (although it is not proven that the mechanism of this stimulation involves the acceleration of product dissociation from myosin). (3) Threads of cytoplasmic actomyosins (discussed below) contract in the presence of ATP and Mg** (although it is not proven that a sliding mechanism is involved). (4) ATP dissociates cytoplasmic actin and myosin. These striking similarities cannot reasonably accounted for by chance alone. Rather, it seems likely that muscle and various other cells have a common mechanism for generating force for movement.

This argument is strengthened by the ease with which the actins and myosins from various sources can cross species boundaries to interact with one another. Although there are some quantitative

differences in the reactions (whose meaning is yet to be discovered), all cytoplasmic myosins can form active hybrids with muscle actin, and all the cytoplasmic actins form active hybrids with muscle myosin. Thus, the cytoplasmic proteins can interact with muscle proteins which are known to generate force for movement, making it likely the cytoplasmic actin and myosin themselves interact in vivo to cause movement.

Finally, the structural features of the muscle contractile proteins, which are so vital to the contractile mechanism in muscle, are shared by all of the cytoplasmic actins and most of the cytoplasmic myosins. All the actins form the same polarized double helical filaments and bind myosin the same way. All the myosins, except Acanthamoeba myosin, form bipolar thick filaments with active sites for ATP hydrolysis and actin binding located at both ends. Bipolar myosin filaments interacting with unipolar actin filaments could generate force by a sliding filament mechanism in nonmuscle cells (Figure 15). All the measured biochemical properties of the cytoplasmic actins and myosins are also in accord with this suggestion. Force generation in Acanthamoeba could also be caused by sliding actin filaments linked by individual myosin molecules or small oligomers rather than by filamentous myosin aggregates (Figure 15).

We should point out that others have made similar suggestions on theoretical grounds²⁵⁷ or based on the properties of the cytoplasmic proteins they were studying. 126, contractile 151,171 Unfortunately, these comparative arguments will never prove that this sliding filament theory is correct; the theory must be proven experimentally.16

Contraction Analogues

Although it is difficult to design experiments to assess directly the role of cytoplasmic contractile proteins in cell motility, certain contraction analogues are available which show the contractile nature of cytoplasmic actin and myosin. Like muscle actomyosin, platelet²⁵⁸ and Physarum²⁵⁹ actomyosins dissolved in concentrated buffers form threads when squirted into low ionic strength buffers in which the proteins precipitate. When these actomyosin threads are exposed to Mg and ATP, they contract. Although the mechanism of this contraction is not known, even for muscle actomyosin threads, the results prove that these

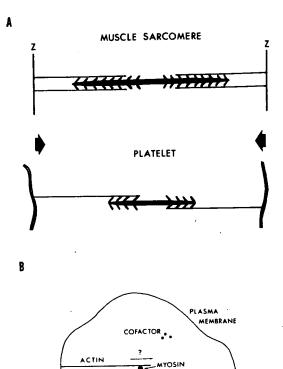


FIGURE 15. Structural similarities between the contractile protein of muscle and other cells. A. Comparison of a muscle sarcomere with one possible arrangement of contractile proteins in a platelet which is consistent with the properties of these proteins. B. A possible arrangement of the contractile proteins in Acanthamoeba. (From Pollard, T. D. and Korn, E. D., The "contractile" proteins of Acanthamoeba castellanii, Cold Spring Harbor Symp. Quant. Biol., 37, 573, 1973. With permission.)

THE WALLETTE

two cytoplasmic actomyosins can form a structure which is capable of at least some type of contraction.

A related contraction analogue used for years in experiments with muscle actomyosin is "superprecipitation." Here actomyosin is suspended as a fine precipitate in a low ionic strength buffer; upon treatment with Mg++ and ATP, the precipitate condenses and expels fluid. Once again, the mechanism is not understood, although it must be related to muscle contraction. The ability of actomyosin from platelets,9 cytoplasmic leucocytes,77,78 brain,260 and Physarum, 178 Dictyostelium⁴² to superprecipitate supports their role in cell movement.

Superprecipitation and contractile threads illustrate the potential for force generation by

cytoplasmic actin and myosin, but these macroscopic movements are difficult to relate to microscopic cellular movements.

Motile Cell Extracts

Another experimental approach relating cytoplasmic contractile proteins to movement is the study of motile extracts of amoebas. Here the movements can be much more lifelike, although the composition of these preparations is much more complex than the contraction analogues. Cytoplasmic streaming outside a living cell was first described by Allen and co-workers in 1960.261 They observed that cytoplasm from the giant amoeba Chaos carolinensis can stream in a normal pattern in a capillary tube in the absence of a limiting plasma membrane. This important experiment proved that the mechanism for developing force for cytoplasmic streaming is present in the cytoplasm itself and can operate outside a living cell.

Later, Thompson and Wolpert262 developed methods for making larger motile extracts from mass cultures of another giant amoeba, Amoeba proteus. ATP stimulated the streaming and the contractions which occur when these crude cytoplasmic extracts (essentially a 1,000 x g supernatant of an amoeba homogenate) are warmed to room temperature. Electron micrographs of these extracts showed several types of filaments. Pollard and co-workers 115,189 confirmed these observations and showed that the motile extracts contain actin filaments and associated thick filaments which morphologically resemble myosin filaments. (Note that Amoeba proteus is not related to Acanthamoeba, which contains no myosin thick filaments.) No actin filaments are visble in cold nonmotile extracts, but, when movement is induced by raising the temperature to 22°C, the viscosity of the extract increases and actin filaments form concomitantly from precursors in the extract. These crude extracts can be fractionated by further centrifugation at 10,000 x g, yielding a nonmotile pellet containing the thick filaments, various membrane fragments, mitochondria, and a nonmotile supernatant containing the precursors of the actin filaments. 189 According to Wolpert, Thompson, and O'Neill, 263 recombining the pellet and supernatant restores motility. An attractive explanation for these observations is that the actin filaments interact with the myosin-like thick filaments and ATP to produce movement. Clearly,

further experiments are needed to substantiate this idea.

Recently, a third type of motile extract has been developed by Taylor, Condeelis, Moore, and Allen, 230 They simply rupture a single amoeba with a micropipet in one of several special buffers designed to mimic intracellular ionic conditions. In a "stabilization buffer" containing no ATP or Ca, the extract is stationary. Stretching portions of the stabilized cytoplasm reveals that it is elastic and contains birefringent fibrils. Addition of ATP causes the extract to lose its elasticity, suggesting that the cytoplasm has "relaxed" in some way. Addition of ATP and Ca⁺⁺ results in various types of streaming and contraction which are sometimes remarkably lifelike. Electron microscopy shows that the extract contains both thin filaments (undoubtedly actin) and myosin-like thick filaments, which could easily account for the observed birefringence, streaming, and physical properties of these extracts. Perhaps the most important property of this system is the ease with which one can change the ionic composition of the medium, making it particularly useful to study control mechanisms (see section on Control Mechanisms).

Contractile Cell Models

As mentioned in the Historical Background, Hoffman-Berling discovered that glycerol-extracted nonmuscle cells could contract when exposed to Mg+ and ATP.9a Similar experiments have now been done with several cells including Amoeba proteus, 264 leucocytes, 265 Physarum, 195 and many other cells. 10 Treatment with ATP usually results in small isodiametric contractions which have little relationship to the movement of living cells, but more lifelike movements have been observed with briefly glycerinated leucocytes. 265

Several of these glycerinated cells have been examined by electron microscopy and found to contain networks of filaments. 195,266 In the case of the giant ameobas, these filaments are probably actin, for they bind heavy meromyosin. 115,231 In addition to these thin filaments, thicker filaments resembling myosin have been observed in these glycerinated amoebas. 266 Micrographs taken after ATP treatment show some "condensation" of the filament networks. 195,266 The association of these filaments with the contraction of cell models strengthens the arguments for their role in cell movement.

Morphological Studies

Morphological studies are necessary to prove the relation of the cytoplasmic contractile proteins to cell movement, for this is the only way to determine how the proteins are organized to generate the forces for movement. Already there is a large literature, from which we will select examples, relating various cell movements to the presence of "microfilaments." In no case have these "microfilaments" been identified biochemically as actin, but decoration with heavy meromyosin shows that some of them are probably actin. In many other cases, the size and appearance of these microfilaments are consistent with their being actin.

The contractile ring of dividing cells (Figure 16) provides the strongest morphological support for a relation between cytoplasmic movement and actin filaments. The contractile ring is an ephemeral structure composed of 6 nm wide filaments found in the cleavage furrow during cell division.267 In newt eggs 109 and HeLa cells, 268 these filaments bind heavy meromyosin tentatively identifying them as actin. Observations on contractile rings detached from the plasma membrane²⁶⁹ show that the structure actually contracts, and measurements of the force exerted by the contractile rings of echinoderm eggs (about 2.5 x 10⁻³ dyne) prove that they develop enough tension to account for the formation of the cleavage furrow.270 No myosin has been identified in the contractile ring,

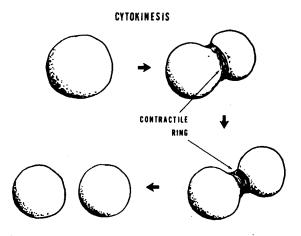


FIGURE 16. The role of the contractile ring in cytokinesis.

although careful measurements of the contractile ring volume during cleavage suggest that the actin filaments are sliding past one another during at least part of the contraction.256

In a similar manner, many different morphogenetic movements have been linked to appropriately placed bundles of microfilaments. 271-279 Recently, some of these filaments have been labeled with heavy meromyosin, 103 tentatively identifying them as actin. Again, no myosin-like filaments are seen with the actin.

One of the most dramatic correlations of filaments with movement is in tail resorption during metamorphosis of tunicate larvae.272,276 At the time of metamorphosis of Amaroucium and Distaplia, bundles of thin filaments suddenly appear in the epithelial cells of the tail.272 The filaments are oriented so as to be able to transmit the tension which these cells exert to pull the internal structures of the tail (including the rigid notochord and the musculature, which do not participate in this movement) into the body of the animal. The epithelial cells actively shorten during tail resorption, and, concomitantly, the filament bundles also become shorter, while maintaining their orientation along the tail axis. These results strongly suggest that filaments participate in tail resorption. After treatment of Distaplia with the drug cytochalasin B, "fusiform filaments 200 A in diameter and up to $0.14 \,\mu\text{M}$ in length were also found in many cells." 193 These dimensions are appropriate for myosin thick filaments, but such filaments are not detected in cells which have not been treated with cytochalasin B. Unfortunately, in this and many other cases, we know nothing further about the molecules making up these filamentous contractile structures.

As important as these ultrastructural studies are for the localization of the contractile proteins within cells, they have the obvious drawback that the cells are dead and that there is no assurance that the observed distribution of the proteins is normal. For this reason, new efforts are being made to resolve the contractile molecules by light microscopy of living cells. The use of phase randomized laser illumination has significantly increased the sensitivity of measurements of birefringence made with polarizing optics, so it is now possible to detect small amounts of anisotropic material in living cells and to correlate its distribution with the pattern of movement.280

Inhibition of Movement by Cytochalasins

The cytochalasins are a related group of mold metabolites which are of interest because they inhibit a variety of cellular movements, including locomotion, 2.06, 281-290 phagocytosis, 290-292 pinocytosis, 102,293 cytokinesis, 267,283,294-299 cytoplasmic streaming, 300-306 chick embryo heartbeat, 307 and a variety of morphogenetic movements associated with thin filaments. 193, 206,278,279,308 The effects of the most widely used form, cytochalasin B, were reviewed two years ago by Wessells and co-workers. 3 10 Hoping that these drugs represented a specific inhibitor for microfilament-based motility, the authors wrote: "... the prediction is that sensitivity to the drug implies presence of some kind of contractile microfilaments system. Only further work will define the limits of confidence to be placed upon such diagnoses." Many new experiments, reviewed below, are difficult to reconcile with this prediction, but, as pointed out by Carter, 311 who originally described the effects of cytochalasins: "Unfortunately this proposal has been adopted as a basis for the design and interpretation of cytochalasin experiments instead of being regarded as one of several hypotheses which deserve to be tested." We shall now review experiments which fit the prediction of Wessells et al., then turn to certain other effects which are difficult to interpret in terms of effects on microfilaments, and conclude with a summary of currently unavailable information which must be obtained to understand the effects of cytochalasins.

In numerous instances effects on movement have been correlated with the disruption or disorganization of arrays of thin filaments. In at least one case (disruption of filaments associated with tail resorption of tunicate larvae), 193 the effects are rapid (seen within 0.5 to 1 min), are caused by low concentrations (2 μ M), and are rapidly (1.7) min after washout) and completely reversible. Our interpretation of these observations is that the drug may rapidly and reversibly interact with a specific component(s) of the tail resorption system. In other cases (e.g., chick embryo oviduct),278 concentrations of at least 60 µM applied over a span of hours were used to disrupt microfilaments and stop morphogenesis. The apparent need for higher concentration in these cells suggests that the drug penetrates poorly or that it is rapidly inactivated or that the target(s) of the drug is less sensitive. In the developing chick

heart, the filaments disrupted by rather high doses (100 µM) of cytochalasin B are thin filaments attached to Z lines and, therefore, are undoubtedly actin. 307 In other cases the cytoplasmic filaments which are disrupted by cytochalasin B also bind heavy meromyosin (filaments in glial cells, salivary epithelium, oviduct, and probably neurones from chick embryos)103,106 and, hence, are presumably actin. In the remaining cases, the diameter of the filaments is near that of actin. It is usually easy to see how the observed arrangement of filaments which are affected by cytochalasin B could develop force for movement.

Cytochalasin B also lowers the viscosity of polymerized actin from platelets and muscle312,313 and disrupts the organization of negatively stained actin filaments visualized by electron microscopy.313 In addition, it lowers the viscosity of actomyosin prepared by mixing purified actin and myosin and decreases the actin activation of the Mg-ATPase of muscle heavy meromyosin.312,313 However, it does not affect the ATPase of heavy meromyosin alone, 313 and all these effects, therefore, can presumably be explained by its effect on actin.

The drug does not lower the viscosity of the actin-troponin-tropomyosin complex, and the filaments formed by this complex appear prefectly normal by electron microscopy.313 Therefore, reports that cytochalasin B does not affect actin filaments decorated with heavy meromyosin^{3 1 4} or does not block spontaneous contractions of developing muscle cells^{287,315} could be explained by postulating that these systems contain troponin-tropomyosin which protects the actin from the effects of cytochalasin B.

These experiments do not show that cytochalasin B affects actin in vivo; they only show that cytochalasin B has the capability of affecting actin. Furthermore, substantial effects in vitro were observed only at rather high (50 to 100 µM) concentrations of drug. 312,313 Therefore, the effects in vitro are difficult to relate to effects in vivo, which are frequently caused by 100-fold lower concentrations of drug.

Effects which suggest that the drug interacts with membranes rather than filaments have also been reported. In a variety of cells, cytochalasin B inhibits uptake of small molecules such as glucose, ^{3 2 0 - 3 2 2} deoxyglucose, ^{3 2 0 ,3 2 2 - 3 2 4} methylglucose, 321,326 glucosamine, 320,322,325,326 uridine, 327 and thymidine 327 at concentrations of the drug which range from a low of 0.08 μM to a high of 4.1 μ M. Cytochalasin B also alters the properties of the action potential of cardiac muscle cells^{3 2 7 a} and changes the adhesion and electrophoretic mobility of amphibian gastrula cells.327b

Dose dependent effects suggesting that the drug attacks more than one site have been reported. In chick embryo fibroblasts, 323 the effects on uptake of glucose and deoxyglucose were stated to be observable at concentrations of cytochalasin B which were too low to alter the morphology of the cells. In human polymorphonuclear leukocytes, less than 2 µM cytochalasin B inhibits motility but stimulates chemotaxis, but above this concentration the drug inhibits both chemotaxis and motility. 282 In Earle's L mouse fibroblasts, 1 to 2 µM cytochalasin B inhibits locomotion, movements of the ruffled membrane, and cytokinesis, but nuclear extrusion is rare. Only at about 20 µM cytochalasin B are frequent nuclear extrusions noted.283 The opposite response to concentration was noted for nuclear extrusion in cloned, pigmented retinal cells; frequent extrusions were noted at 2 µM cytochalasin B, but extrusion was inhibited at 20 µM cytochalasin B.³¹⁶ In the same cells, a web of thin filaments just beneath the apical protrusions of the cells is sensitive to 2 μ M cytochalasin B, but a peripheral ring of thin filaments is disrupted only at 20 µM cytochalasin B.316

For unknown reasons, certain movements are not always inhibited by cytochalasin B. For example, the drug reportedly inhibits formation of a cleavage furrow in HeLa cells²⁶⁷ and Arbacia egg,256 but formation and regression of the furrow have been reported for L cells298 and HeLa cells. 328 In addition, the thin filaments of the microvilli of C-4II cells, 308 the contractile ring filaments of Xenopus eggs, 294 and the filaments in certain algae³⁰¹ are not disrupted by cytochalasin B. Exocytosis can be either inhibited³²⁹⁻³³³ or stimulated. 317,334,335 Still more paradoxical are the observations that cytochalasin causes certain movements. These include nuclear extrusion observed in many cells^{283,287},-311,316,336 and local contraction of cultured myotubes caused by cytochalasin D.337 Certain effects such as inhibition of oxidation of glucose phosphates^{290,335} or inhibition of incorporation of glucose and glucosamine into mucopolysaccharides315 seem related to the effects on

transport.338 Certain other effects seem difficult to relate either to effects on thin filaments or to effects on transport. These include induction of complex double membranes in Schwann cells, 339 inhibition of induction of tyrosine amino transferase by insulin and cortisol in Reuber hepatoma cells,340 formation of crystalloids in mouse ova,341 formation of leptomeric bodies in cultured myotubes³³⁷ and possibly BHK-21 cells, 194 formation of nuclear filament arrays in cultured myotubes, 337 and potentiation of DNA synthesis in lymph node cells stimulated with phytohemagglutinin or concanavalin A.342 and inhibition of mitochondrial contraction. 342a

Interpretation of the effects of cytochalasins will require information which is not yet available. We do not know if cytochalasin even enters cells, although experiments of DeLaat et al., 343 which show that the cleavage furrow of Xenopus eggs becomes sensitive to cytochalasin B at the same time that the membrane resistance decreases, do suggest that a permeability barrier to the drug has been removed and, hence, that the drug enters these cells. Assuming that cytochalasins enter cells, we still do not know whether we administer the active form of the drug or whether the drug must be metabolized to the active form or whether it is degraded to an inactive derivative. Such effects could explain certain cases of drug insensitivity. We do not know whether the drug attacks a single target or whether, as seems somewhat more likely in view of the currently available information, it attacks several sensitive targets. We do not know whether the target(s) is a protein(s) or whether, owing to the hydrophobic structure of the cytochalasins, it is the lipid portion of membranes. Finally, little or no information is available about the purity of any cytochalasin, and, hence, we do not know whether the active compound is the drug itself or a contaminant. These points can easily be investigated using radioactive cytochalasins, which can be prepared by biosynthesis from radioactive precursor344 or by chemical introduction of tritium. 345-347 Early results with radioactive cytochalasins suggest that cytochalasin B binds to high and low affinity sites in platelets³⁴⁵ and that cytochalasin D interacts with platelet myosin rather than platelet actin.347

Reconstitution Experiments

In the end, the most convincing evidence that cytoplasmic actin and myosin can interact to cause cell movements will be the reconstitution of a motile preparation from purified components. This reconstitution might most easily be made using procedures already available for making cell-free motile extracts which are described above, although it would be more elegant to enclose the proteins within a plasma membrane. Observation of streaming of Physarum or muscle actomyosin in thin capillary tubes provides preliminary evidence that this approach is feasible.348

CONCLUDING REMARKS

The biochemical studies reviewed above prove that actin and myosin are found in nonmuscle cells from phyla as widely separated as Protozoa, Echinoderms, and Chordates. The properties of the cytoplasmic actins and myosins, together with the ultrastructural and physiological observations on their localization and activity within cells, provide compelling evidence for the idea that many cells have the same force generating system that is found in muscle. Without the extensive information available on muscle contraction, we would know little about the function of cytoplasmic contractile proteins, but comparative arguments and the study of various contractile models leave little doubt that the actin-myosin contractile mechanism is much the same in all cells.

Compared with our knowledge of cytoplasmic actin and myosin, little information is available on the factors controlling the actin-myosin interaction or other steps in the activation of the contractile apparatus in nonmuscle cells. Further information is also needed on the intracellular localization of the contractile proteins. Both of these areas are under active investigation, so additional data will be forthcoming.

The identification of actin and myosin in "primitive" cells such as protozoa suggests that the mechanism for developing contractile force in muscle is not new but must have originated in primitive unicellular organisms long ago, where it was used for cytokinesis, locomotion, and phagocytosis. Comparisons of the properties of these "primitive" contractile proteins with those of muscle suggest how the actin-myosin contractile system may have evolved.

The first and perhaps most startling finding is that certain key functional properties of these proteins are the same. The actins all form

filaments which activate the Mg++ ATPase of the myosins. The properties of the active sites of all the actins and myosins are very similar, judging from the ease with which active hybrids are formed between proteins from distantly related organisms. Therefore, a satisfactory molecular mechanism for contraction involving actin and myosin must have evolved long ago, and strong constraints have prevented any major alteration in the functional properties of the active sites since that time.

Secondly, it appears that the only significant evolutionary alterations in the contractile apparatus have occurred in the various proteins which interact with actin, while actin has remained essentially unchanged. The reason for this conservation of actin is a matter of speculation, but it seems reasonable that changes have been prevented, because actin must interact with several other proteins: with itself to form an actin filament, with myosin to activate the Mg ATPase, with tropomyosin and troponin or other control proteins to regulate force generation. This explanation has been suggested previously for the evolutionary restraints on cytochrome-C, which must interact with only two other proteins.349

Finally, it is clear that different regions of the myosin molecule have changed much more than others. The properties of the active site for actin binding and ATP hydrolysis appear to vary little in different types of myosin, while the fibrous tail of various myosins has different solubility or (in the case of Acanthamoeba myosin) is absent. Such major variation in the tail of the myosin can be related to its organization in the cell, because different cells with different types of movement might easily require contractile proteins organized differently. The soluble myosins found in Acanthamoeba and Physarium seem adapted to the fluid cytoplasm of these cells, while the insoluble myosin of striated muscle is adapted to form part of a stable lattice of contractile filaments specialized for powerful contraction in one dimension.

ACKNOWLEDGMENTS

We wish to thank our former colleagues, Drs. R. S. Adelstein, E. Eisenberg, W. W. Kielley, W. M. Kuehl, and especially E. D. Korn, for the many hours of critical discussions without which this review and much of the work reviewed would not have been possible. Drs. S. Hitchcock and B. Kaminer offered many useful suggestions on the manuscript. Drs. R. S. Adelstein, M. Clarke, R. Fine, S. Lin, V. Nachmias, E. Puszkin, J. Spudich, and D. L. Taylor kindly provided data prior to publication. Drs. C. Cohen, B. Kaminer, V. Nachmias, R. Niederman, and J. Spudich kindly provided electron micrographs. The unpublished work of Dr. Pollard referred to herein was supported by Grant GM 19654 from the National Institutes of Health.

REFERENCES

- lino, T., Genetics and chemistry of bacterial flagella, Bacteriol. Rev., 33, 455, 1969.
- Weis-Fogh, T. and Amos, W. B., Evidence for a new mechanism of cell motility, Nature, 236, 301, 1972.
- Stephens, R. E., Microtubules, in Subunits in Biological Systems, Part A, Timasheff, S. N. and Fasman, G. D., Eds., Marcel Dekker, New York, 1971, chap. 8.
- 3a. Olmsted, J. B. and Borisy, G. G., Microtubules, Annu. Rev. Biochem., 42, 507, 1973.
- 4. Huxley, H. E., Mechanism of muscular contraction, Science, 164, 1356, 1969.
- Bray, D., Cytoplasmic actin: a comparative study, Cold Spring Harbor Symp. Quant. Biol., 37, 567, 1973.
- 5a. Allen, R. D. and Kamiya, N., Primitive Motile Systems in Cell Biology, Academic Press, New York, 1964.
- 5b. Dryl, S. and Zurzycki, J., Eds., Symposium on motile systems of cells, in Acta Protozoologica, Vol. 11, Warsaw, 1972.
- 5c. Komnick, H., Stockem, W., and Wohlfarth-Botterman, Cell motility: mechanisms in protoplasmic streaming and amoeboid movement, Int. Rev. Cytol., 34, 169, 1973.
- 5d. Pollard, T. D., Progress in understanding amoeboid movement at the molecular level, in The Biology of Amoeba, Jeon, K., Ed., Academic Press, New York, 1972, 291.
- 5e. Huxley, H. E., Muscular contraction and cell motility, Nature, 243, 445, 1973.

- Loewy, A. G., An actomyosin-like substance from the plasmodium of a myxomycete, J. Cell. Comp. Physiol., 40, 127, 1952.
- Szent-Gyorgyi, A., Chemistry of Muscle Contraction, Academic Press, New York, 1947.
- Ts'o, P. O. P., Eggman, L., and Vinograd, J., Physical-chemical studies of myxomyosin, an ATP sensitive protein in cytoplasm, Biochim. Biophys. Acta, 25, 532, 1957.
- 8a. Nakajima, H., The mechanochemical system behind streaming in Physarum, in Primitive Motile Systems in Cell Biology, Allen, R. D. and Kamiya, N., Eds., Academic Press, New York, 1964, 111.
- Bettex-Galland, M. and Luscher, E. F., Extraction of an actomyosin-like protein from human thrombocytes, Nature, 184, 276, 1959.
- 9a. Hoffmann-Berling, H. and Weber, H. H., Vergleich der Motilität von Zellmodellen und Muskelmodellen, Biochim. Biophys. Acta, 10, 629, 1953.
- Arronet, N. I., Motile Muscle and Cell Models, Consultants Bureau, New York, 1973.
- Bettex-Galland, M., Portzehl, H., and Luscher, E. F., Dissociation of thrombosthenin into two components comparable with actin and myosin, Nature, 193, 777, 1962.
- Hatano, S. and Oosawa, F., Extraction of an actin-like protein from the plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle, J. Cell. Physiol., 68, 197, 1966.
- Hatano, S. and Oosawa, F., Isolation and characterization of plasmodium actin, Biochim. Biophys. Acta. 127, 488. 1966.
- Hatano, S. and Tazawa, M., Isolation, purification, and characterization of myosin B from myxomycete plasmodium, Biochim. Biophys. Acta, 154, 507, 1968.
- Adelman, M. R. and Taylor, E. W., Isolation of an actomyosin-like protein complex from slime mold plasmodium and the separation of the complex into actin- and myosin-like fractions, Biochemistry, 8, 4964, 1969.
- Adelman, M. R. and Taylor, E. W., Further purification and characterization of slime mold myosin and slime mold 16. actin, Biochemistry, 8, 4976, 1969.
- Ishikawa, H., Bischoff, R., and Holtzer, H., Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol., 43, 312, 1969.
- Huxley, H. E., Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol., 7, 281, 1963.
- The mechanism of muscle contraction, Cold Spring Harbor Symp. Quant. Biol., 37, 1973. 19.
- Bendall, J. R., Muscles, Molecules, and Movement, Elsevier, New York, 1969. 20.
- 21. Young, M., Molecular basis of muscle contraction, Annu. Rev. Biochem., 38, 913, 1969.
- Taylor, E. W., Chemistry of muscle contraction, Annu. Rev. Biochem., 41, 577, 1972. 22.
- 23. Tonomura, Y. and Oosawa, F., Molecular mechanism of contraction, Annu. Rev. Biophys. Bioengineering, 1, 159, 1972.
- 24. Huxley, H. E., Muscle cells, in The Cell, Brachet, J. and Mirsky, A. E., Eds., Academic Press, New York, 1960, 365.
- Huxley, A. F. and Simmons, R. M., Mechanical transients and the origin of muscular force, Cold Spring Harbor Symp. Quant. Biol, 37, 669, 1973.
- Lowey, S., Myosin-molecule and filament, in Subunits in Biological Systems, Part A, Timasheff, S. N. and Fasman, 26. G. D., Eds., Marcel Dekker, New York, 1971, chap. 5.
- 27. Woledge, R. C., Heat production and chemical change in muscle, Progr. Biophys. Mol. Biol., 22, 37, 1971.
- Eisenberg, E. and Moos, C., The adenosine triphosphatase activity of acto-heavy meromyosin, a kinetic analysis of actin activation, Biochemistry, 7, 1486, 1968.
- Ebashi, S. and Endo, M., Calcium ion and muscle contraction, Progr. Biophys. Mol. Biol., 18, 125, 1968. 29.
- Greaser, M. L. and Gergely, J., Reconstitution of troponin activity from three protein components, J. Biol. Chem., 246, 4226, 1971.
- Casper, D. L. D., Cohen, C., and Longley, W., Tropomyosin: crystal structure, polymorphism, and molecular 31. interactions, *J. Mol. Biol.*, 41, 87, 1969.
- Spudich, J. A., Huxley, H. E., and Finch, J. T., Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin, J. Mol. Biol., 72, 619, 1972.
- Hanson, J., Ledney, V., O'Brien, E. J., and Bennett, P. M., Structure of the actin-containing filaments in vertebrate skeletal muscle, Cold Spring Harbor Symp. Quant. Biol., 37, 311, 1973.
- Eisenberg, E. and Kielley, W. W., Native tropomyosin: effect on the interaction of actin with heavy meromyosin and subfragment-1, Biochem. Biophys. Res. Commun., 40, 50, 1970.
- Kendrick-Jones, J., Lehman, W., and Szent-Gyorgyi, A. G., Regulation in molluscan muscles, J. Mol. Biol., 54, 313, 1970
- Lehman, W., Kendrick-Jones, J., and Szent-Gyorgyi, A. G., Myosin-linked regulatory systems, comparative studies, Cold Spring Harbor Symp. Quant. Biol., 37, 319, 1973.
- Kendrick-Jones, J., Szentkiralyi, E. M., and Szent-Gyorgyi, A. G., Myosin-linked regulatory systems, the role of the light chains, Cold Spring Harbor Symp. Quant. Biol., 37, 47, 1973.
- Ashley, C. C. and Ridgeway, E. B., Simultaneous recording of membrane potential, calcium transient, and tension in single muscle fibers, Nature, 219, 1168, 1968.
- Hatano, S., Kondo, H., and Miki-Noumura, T., Purification of sea urchin egg actin, Exp. Cell Res., 55, 275, 1969.

54

- 37a. Miki-Noumura, T. and Oosawa, F., An actin-like protein from the sea urchin eggs, Exp. Cell Res., 56, 224, 1969.
- 38. Tilney, L. G. and Mooseker, M., Actin in the brush border of epithelial cells of the chicken intestine, Proc. Natl. Acad. Sci. U.S.A., 68, 2611, 1971.
- Yang, Y.-Z. and Perdue, J. F., Contractile proteins of cultured cells. I. The isolation and characterization of an actin-like protein from cultured chick embryo fibroblasts, J. Biol. Chem., 247, 4503, 1972.
- Spudich, J. A. and Watt, S., The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin, J. Biol. Chem., 246, 4866, 1971.
- Mihalyi, E. and Rowe, A. J., Studies on the extraction of actomyosin from rabbit muscle, Biochem. Z., 345, 267, 1966.
- Woolley, D. E., Extraction of an actomyosin-like protein from amoebae of Dictyostelium discoideum, J. Cell. Physiol., 76, 185, 1970.
- Woolley, D. E., An actin-like protein from amoebae of Dictyostelium discoideum, Arch. Biochem. Biophys., 150, 519, 1972.
- Weihing, R. R. and Korn, E. D., Acanthamoeba actin. Isolation and properties, Biochemistry, 10, 590, 1971.
- Bettex-Galland, M. and Luscher, E. F., Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem., 20, 1, 1965.
- Probst, E. and Luscher, R., Studies on thrombosthenin A, the actin-like moiety of the contractile protein from blood platelets. I. Isolation, characterization, and evidence for two forms of thrombosthenin A, Biochim. Biophys. Acta, 278, 577, 1972.
- Spudich, J. A., Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symp. Quant. Biol., 37, 585, 1973.
- Adelstein, R. S. and Conti, M. A., The characterization of contractile proteins from platelets and fibroblasts, Cold Spring Harbor Symp. Quant. Biol., 37, 599, 1973.
- Puszkin, S. and Berl, S., Actomyosin-like protein from brain. Separation and characterization of the actin-like component, Biochim. Biophys. Acta, 256, 695, 1972.
- Puszkin, S., Nicklas, W. J., and Berl, S., Actomyosin-like protein in brain. Subcellular distribution, J. Neurochem., 19, 1319, 1972.
- Weihing, R. R. and Korn, E. D., Acanthamoeba actin: composition of the peptide that contains 3-methylhistidine and a peptide that contains ε-N-methyllysine, Biochemistry, 11, 1538, 1972.
- Totsuka, T. and Hatano, S., ATPase activity of plasmodium actin polymer formed in the presence of Mg²⁺, Biochim. Biophys. Acta, 223, 189, 1970.
- Hatano, S. and Totsuka, T., The polymerization of plasmodium actin in the presence of divalent cations, J. Mechanochem. Cell Motility, 1, 76, 1972.
- Tsuboi, K. K., Actin and bound nucleotide stoichiometry, Biochim. Biophys. Acta, 160, 420, 1968.
- Asatoor, A. M. and Armstrong, M. D., 3-Methylhistidine, a component of actin, Biochem. Biophys. Res. Commun. 26, 168, 1967.
- 55a. Adelman, M. R., personal communication, 1973.
- Johnson, P., Harris, C. I., and Perry, S. V., 3-Methylhistidine in actin and other muscle proteins, Biochem. J., 105, 361, 1967.
- Adelstein, R. S. and Kuehl, W. M., Structural studies on rabbit skeletal actin. I. Isolation and characterization of the peptides produced by cyanogen bromide cleavage, Biochemistry, 9, 1355, 1970.
- Elzinga, M., Amino acid sequence studies on rabbit skeletal muscle actin. Cyanogen bromide cleavage of the protein and determination of the sequence of seven of the resulting peptides, Biochemistry, 9, 1365, 1970.
- Kamiya, R., Maruyama, K., Kuroda, M., Kawamura, M., and Kikuchi, M., Mg-polymer of actin formed under the influence of \(\beta\)-actinin, \(Biochim.\) Biophys. Acta, 256, 120, 1972.
- Rees, M. K. and Young, M., Studies on the isolation and molecular properties of homogeneous globular actin, J. Biol. Chem., 242, 4449, 1967.
- Elzinga, M., Collins, J. H., Kuehl, W. M., and Adelstein, R. S., Complete amino acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A., 70, 2687, 1973.
- Booyse, F. M., Hoveke, T. P., and Rafelson, M. E., Jr., Human platelet actin, isolation and properties, J. Biol. Chem., 248, 4083 1973.
- Weihing, R. R. and Korn, E. D., ϵ -N-Dimethyllysine, a component of ameba actin, Nature, 227, 1263, 1970. 63.
- Kuehl, W. M. and Adelstein, R. S., Identification of ϵ -N-monomethyllysine and ϵ -N-trimethyllysine in rabbit skeletal myosin, Biochem. Biophys. Res. Commun., 37, 59, 1969.
- Elzinga, M. and Collins, J., The amino acid sequence of rabbit skeletal muscle actin, Cold Spring Harbor Symp. 65. Quant. Biol., 37, 1, 1973.
- Fine, R. E. and Bray, D., Actin in growing nerve cells, Nat. New Biol., 234, 115, 1971.
- Martonosi, A., Gouvea, M., and Gergely, J., Studies on actin. I. The interaction of C14-labelled adenine nucleotides with actin, J. Biol. Chem., 235, 1700, 1960.
- Chrambach, A., Barany, M., and Finkelman, F., The bound calcium of actin, Arch. Biochem. Biophys., 93, 61, 1961.

- Tonomura, Y. and Yoshimura, J., Removal of bound calcium and nucleotides of G-actin by treatment with ethylene-diamine-tetraacetic acid, J. Biochem., 50, 79, 1961.
- Kasai, M. and Oosawa, F., The exchangeability of actin bound calcium with various divalent cations, Biochim. Biophys. Acta, 154, 520, 1968.
- 71. Straub, F. B. and Feuer, G., Adenosine triphosphate, the functional group of actin, Biochim. Biophys. Acta, 4, 455,
- Asakura, S., The interaction between G-actin and ATP, Arch. Biochem. Biophys., 92, 140, 1961.
- Hatano, S., Totsuka, T., and Oosawa, F., Polymerization of plasmodium actin, Biochim. Biophys. Acta, 140, 109, 1967.
- Miki-Noumura, T., An actin-like protein of the sea urchin eggs. II. Direct isolation procedure, Dev. Growth Differ., 11, 219, 1969
- 74a. Miki-Noumura, T. and Kondo, H., Polymerization of actin from sea urchin eggs, Exp. Cell Res., 61, 31, 1970.
- 75. Pollard, T. D., Shelton, E., Weihing, R. R., and Korn, E. D., Ultrastructural characterization of F-actin from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromy osin, J. Mol. Biol., 50, 91, 1970.
- Stossel, T. and Pollard, T. D., Myosin in polymorphonuclear leukocytes, J. Biol. Chem., 248, in press.
- Senda, N., Shibata, N., Tatsumi, N., Kondo, K., and Hamada, K., A contractile protein from leukocytes. Its extraction and some of its properties, Biochim. Biophys. Acta, 181, 191, 1969.
- Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., and Senda, N., A contractile protein possessing Ca²⁺ sensitivity (natural actomyosin) from leukocytes. Its extraction and some of its properties, Biochim. Biophys. Acta, 256, 565, 1972.
- 78a. Tatsumi, N., Shibata, N., Okamura, Y., Takeuchi, K., and Senda, N., Actin and myosin from leucocytes, Biochim. Biophys. Acta, 305, 433, 1973.
- Lusty, C. J. and Fasold, H., Characterization of sulfhydryl groups of actin, Biochemistry, 7, 2933, 1969.
- Nachmias, V. T., Huxley, H. E., and Kessler, D., Electron microscope observations on actomyosin and actin preparations from Physarum polycephalum and their interaction with heavy meromyosin subfragment-1 from muscle myosin, J. Mol. Biol., 50, 83, 1970.
- Hanson, J. and Lowy, J., The structure of F-actin and of actin filaments isolated from muscle, J. Mol. Biol., 6, 46, 1963.
- 81a. Nachmias, V. T., Electron microscope observations on myosin from Physarum polycephalum, J. Cell Biol., 52, 648, 1972.
- 82. Hanson, J., Budapest Symposium on Muscle, Ernst, E. and Straub, F. B., Eds., Akademiai Kiado, Budapest, 1968,
- Hinssen, H., Actin in isolated ground plasm of Physarum polycephalum, Cytobiologie, 5, 146, 1972. 83.
- Moore, P. B., Huxley, H. E., and DeRosier, D. J., Three-dimensional reconstruction of F-actin, thin filaments, and decorated thin filaments, J. Mol. Biol., 50, 279, 1970.
- Mommaerts, W. F. H. M., The molecular transformations of actin. III. The participation of nucleotides, J. Biol. Chem., 198, 469, 1952.
- 86. Asakura, S. and Oosawa, F., Dephosphorylation of adenosine triphosphate in actin solutions at low concentrations of magnesium, Arch. Biochem. Biophys., 87, 273, 1960.
- Asakura, S., F-Actin adenosine triphosphatase activated under sonic vibration, Biochem, Biophys. Acta, 52, 65, 1961.
- 88. Ikkai, T. and Ooi, T., The effects of pressure on F-G transformations of actin, Biochemistry, 5, 1551, 1966.
- Asai, H. and Tawada, K., Enzyme nature of F-actin at high temperatures, J. Mol. Biol., 20, 403, 1966.
- Weihing, R. R., unpublished observations, National Institutes of Health, Bethesda, 1970.
- Fujime, S. and Hatano, S., Plasmodium actin polymers studied by quasi-elastic scattering of laser light, J. Mechanochem. Cell Motility, 1, 81, 1972.
- Totsuka, T., Transformations of plasmodium actin polymers at high temperatures, Biochim Biophys. Acta, 234, 162, 1971.
- Hatano, S., Conformational changes of plasmodium actin polymers formed in the presence of Mg+, J. Mechanochem, Cell Motility, 1, 75, 1972.
- Hatano, S. and Takeuchi, I., ATP content in myxomycete plasmodium and its levels in relation to some external conditions, Protoplasma, 52, 169, 1960.
- Maruyama, K., A study of β-actinin, myofibrillar protein from rabbit muscle, J. Biochem., 69, 369, 1971.
- 95a. Rizzino, A. A., Barouch, W. W., Eisenberg, E., and Moos, C., Actin-heavy meromyosin binding. Determination of binding stoichiometry from adenosine triphosphatase kinetic measurements, Biochemistry, 9, 2402, 1970.
- Eisenberg, E. and Weihing, R. R., Effect of skeletal muscle native tropomyosin on the interaction of amoeba actin with heavy meromyosin, Nature, 228, 1092, 1970.
- Eisenberg, E. and Weihing, R. R., unpublished observations, National Institutes of Health, Bethesda, 1970.
- Lehman, W. and Szent-Gyorgyi, A. G., Activation of the adenosine triphosphatase of Limulus polyphemus actomyosin by tropomyosin, J. Gen. Physiol., 59, 375, 1972.
- Pollard, T. D., Shelton, E., and Korn, E. D., The validity of identifying filaments in amebas as F-actin by their ability to form an arrowhead complex with muscle heavy meromyosin, J. Cell Biol., 47, 159a, 1970.

- Behnke, O., Kristensen, B. I., and Nielsen, L. E., Electron microscopical observations of actinoid and myosinoid filaments in blood platelets, J. Ultrastruct. Res., 37, 351, 1971.
- 100a. Bettex-Galland, M., Probst, E., and Behnke, O., Complex formation with heavy meromyosin of the isolated actin-like component of thrombosthenin, the contractile protein from blood platelets, J. Mol. Biol., 68, 533, 1972.
- Zucker-Franklin, D. and Grusky, G., The actin and myosin filaments of human and bovine blood platelets, J. Clin. Invest., 51, 419, 1972.
- Allison, A. C., Davies, P., and dePetris, S., Role of contractile microfilaments in macrophage movement and 102. endocytosis, Nat. New Biol., 232, 153, 1971.
- Spooner, B. S., Ash, J. F., Wrenn, J. T., Frater, R. B., and Wessells, N. K., Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements, Tissue Cell, 5, 37, 1973.
- McNutt, N. S., Culp, L. A., and Black, P. H., Contact inhibited revertant cell lines isolated from SV-40 transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb/c 3T3 cells, J. Cell Biol., 56, 412, 1973.
- Rostgaard, J., Kristensen, B. I., and Nielsen, L. E., Electron microscopy of filaments in the basal part of rat kidney tubule cells and their in situ interaction with heavy meromyosin, Z. Zellforsch. Mikrosk. Anat., 132, 497, 1972.
- Luduena, M. A. and Wessells, N. K., Cell locomotion, nerve elongation, and microfilaments, Dev. Biol., 30, 427, 1973.
- Burton, P. R. and Kirkland, W. L., Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin, Nat. New Biol., 239, 244, 1972.
- Chang, C.-M. and Goldman, R. D., The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol., 57, 867, 1973.
- Perry, M. M., John, H. A., and Thomas, N. S. T., Actin-like filaments in the cleavage furrow of newt egg, Exp. Cell Res., 65, 249, 1971.
- Forer, A. and Behnke, O., An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew). I. The spindle, Chromosoma, 39, 145, 1972.
- Forer, A. and Behnke, O., An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew). II. The cell cortex, Chromosoma, 39, 175, 1972.
- Forer, A. and Behnke, O., An actin-like component in sperm tails of a crane fly (Nephrotoma suturalis Loew), J. Cell Sci., 11, 491, 1972.
- Tilney, L. G., Hatano, S., Ishikawa, H., and Mooseker, M. S., The polymerization of actin; its role in the generation of the acrosomal process of certain echinoderm sperm, J. Cell Biol., 59, 109, 1973.
- 113a. Jessen, H., Behnke, O., Wingstrand, K. G., and Rostgaard, J., Actin-like filaments in the acrosomal apparatus of spermatozoa of a sea urchin, Exp. Cell Res., 80, 47, 1973.
- 114. Gawadi, N., Actin in the mitotic spindle, Nature, 234, 410, 1971.
- Pollard, T. D. and Korn, E. D., Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts, J. Cell Biol., 48, 216, 1971.
- Allera, A., Beck, R., and Wohlfarth-Bottermann, K. E., Extensive fibrillar protoplasmic differentiations and their significance for protoplasmic streaming. VIII. Identification of the plasmafilaments in Physarum polycephalum as F-actin by in situ binding of heavy meromyosin, Cytobiologie, 4, 437, 1971.
- 117. Pollard, T. D., unpublished results.
- 117a. Aronson, J. F., The use of fluorescein-labeled heavy meromyosin for the cytological demonstration of actin, J. Cell Biol., 26, 293, 1965.
- Pollard, T. D. and Korn, E. D., Electron microscopic identification of actin associated with isolated amoeba plasma 118. membranes, J. Biol. Chem., 248, 448, 1973.
- 118a. Palevitz, B., Ash, J. F., and Hepler, P., Actin in the green alga Nitella, Proc. Natl. Acad. Sci. U.S.A., 1973 in press.
- 119. Johnson, G. D., Holborow, E. J., and Glynn, L. E., Antibody to smooth muscle in patients with liver disease, Lancet, 2, 878, 1965.
- Gabbiani, G., Ryan, G. B., Lamelin, J. P., Vassalli, P., Majno, G., Bouvier, C. A., Cruchaud, A., and Luscher, E. F., 120. Human smooth muscle antibody. Its identification as antiactin antibody and a study of its binding to nonmuscle cells, Am. J. Pathol., 72, 473, 1973.
- Carsten, M. E. and Katz, A. M., Actin: a comparative study, Biochim. Biophys. Acta, 90, 534, 1964. 121.
- Hunter, W. M. and Greenwood, F. C., Preparation of I-131 labelled human growth hormone of high specific activity, Nature, 194, 495, 1962.
- 123. Roholt, O. A. and Pressman, D., Iodination – isolation of peptides from the active site, Methods Enzymol., 25, 438, 1972.
- 124. Gerday, C., Robyns, E., and Gosselin-Rey, C., High resolution techniques of peptide mapping. Separation of bovine carotid actin peptides on cellulose thin layers and of the corresponding dansyl peptides on polyamide thin layers, J. Chromatogr., 38, 408, 1968.
- Undenfriend, S., Stein, S., Bohlen, P., Dairman, W., Leimgruber, W., and Weigele, M., Fluorescamine: a reagent for assay of amino acids, peptides, proteins and primary amines in the picomole range, Science, 178, 871, 1972.
- Pollard, T. D. and Korn, E. D., The "contractile" proteins of Acanthamoeba castellanii, Cold Spring Harbor Symp. Quant. Biol., 37, 573, 1973.

57

- Korn, E. D. and Wright, P. L., Macromolecular composition of an amoeba plasma membrane, J. Biol. Chem., 248, 439, 1973.
- Gershey, E. L., Haslett, G. W., Vidali, G., and Allfrey, V. G., Chemical studies of histone methylation. Evidence for 128. the occurrence of 3-methyl-histidine in avian erythrocyte histone fractions, J. Biol. Chem., 244, 4871, 1969.
- Ord, M. G. and Stocken, L. A., Changes in proportion of thiol to disulfide in acid soluble nuclear proteins of Echinus during the first cell cycle, Biochem. J., 116, 415, 1970.
- Byvoet, P., Uptake of label into methylated amino acids from rat tissue histones after in vivo administration of (Me-14C) methionine, Biochim Biophys. Acta, 238, 375a, 1971.
- 130a. Pollard, T. D. and Thomas, S. M., Purification of human platelet myosin: a rapid method applicable to other non muscle cells, submitted for publication, 1973.
- Weisman, R. A. and Korn, E. D., Uptake of fatty acids by Acanthamoeba, Biochim. Biophys. Acta, 116, 229, 1966. 131.
- Bowers, B. and Korn, E. D., The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment, J. Cell Biol., 41, 786, 1969.
- Bowers, B. and Korn, E. D., The fine structure of Acanthamoeba castellanii. 1. The trophozoite, J. Cell Biol., 39, 95, 133. 1968.
- Gershman, L. C., Stracher, A., and Dreisen, P., Subunit structure of myosin. III. A proposed model for rabbit 134. skeletal muscle myosin, J. Biol. Chem., 244, 2726, 1969.
- Godfrey, J. E. and Harrington, W. F., Self-association in the myosin system at high ionic strength. II. Evidence for 135. the presence of a monomerdimer equilibrium, Biochemistry, 9, 894, 1970.
- Lowey, S. and Risby, D., Light chains from fast and slow muscle myosins, Nature, 234, 81, 1971.
- Sarkar, S., Sreter, F. A., and Gergely, J., Light chains of myosins from white, red, and cardiac muscles, Proc. Natl. Acad. Sci. U.S.A., 68, 946, 1971.
- Weeds, A. G. and Frank, G., Structural studies on the light chains of myosin, Cold Spring Harbor Symp. Quant. 138. Biol, 37, 9, 1973.
- Huszar, G. and Elzinga, M., Homologous methylated and nonmethylated histidine peptides in skeletal and cardiac 139 myosins, J. Biol. Chem., 247, 745, 1972.
- Slayter, H. S. and Lowey, S., Substructure of the myosin molecule as visualized by electron microscopy, Proc. Natl. 140. Acad. Sci. U.S.A., 58, 1611, 1967.
- Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H., Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic digestion, J. Mol. Biol., 42, 1, 1969.
- Young, M., King, M. V., O'Hara, D. S., and Molberg, P. J., Studies on the structure and assembly pattern of the light 142. meromyosin section of the myosin rod, Cold Spring Harbor Symp. Quant. Biol., 37, 65, 1973.
- Seidel, J. C., The effects of monovalent and divalent cations on the ATPase activity of myosin, Biochim. Biophys. 143. Acta, 189, 162, 1969.
- Offer, G., The antagonistic action of magnesium ions and EDTA on myosin A ATPase (potassium activated), Biochim. Biophys. Acta, 89, 566, 1964.
- Lymn, R. W. and Taylor, E. W., Mechanism of adenosine triphosphate hydrolysis by actomyosin, Biochemistry, 10, 4617, 1971.
- 145a. Eisenberg, E., Zobel, C. R., and Moos, C., Subfragment-1 of myosin: adenosine triphosphatase activation by actin, Biochemistry, 7, 3186, 1968.
- 145b. Eisenberg, E. and Kielley, W. W., Evidence for a refractory state of heavy meromyosin and subfragment-1 unable to bind to actin in the presence of ATP, Cold Spring Harbor Symp. Quant. Biol., 37, 145, 1973.
- 145c. Bagshaw, C. R., Eccleston, J. F., Trentham, D. R., Yates, D. W., and Goody, R. S., Transient kinetic studies of the Mg**-dependent ATPase of myosin and its proteolytic subfragments, Cold Spring Harbor Symp. Quant. Biol., 37, 127, 1973.
- 145d. Tonomura, Y., Hayashi, Y., and Inoue, A., Formation and decomposition of the myosin-phosphate-ADP complex in the myosin-ATPase reaction, Cold Spring Harbor Symp. Quant. Biol., 37, 169, 1973.
- Hanson, J. and Lowy, J., Discussion, Proc. R. Soc. Lond. [Biol], 160, 523, 1964.
- Booyse, F. M., Howeke, T. P., Zschocke, D., and Rafelson, M. E., Human platelet myosin. Isolation and properties, J. Biol Chem., 246, 4291, 1971.
- Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A., 68, 2703, 1971.
- Adelstein, R. S., Conti, M. A., Johnson, G., Pastan, I., and Pollard, T. D., Isolation and characterization of myosin from cloned mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A., 69, 3693, 1972.
- Berl, S., Puszkin, S., and Nicklas, W. J., Actomyosin-like protein in brain, Science, 179, 441, 1973. 150.
- Nachmias, V. T., Physarum myosin. Two new properties, Cold Spring Harbor Symp. Quant. Biol., 37, 607, 1973.
- Nachmias, V. T., Filament formation by purified Physarum myosin, Proc. Natl. Acad. Sci. U.S.A., 69, 2011, 1972.
- Pollard, T. D. and Korn, E. D., Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzy me similar to muscle myosin, J. Biol. Chem., 248, 4682, 1973.
- Pollard, T. D. and Korn, E. D., Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg ATPase activity, J. Biol. Chem., 248, 4691, 1973.

- Hayashi, Y. and Tonomura, Y., On the active site of myosin A ATPase. X. Functions of two subfragments, S-1, of the myosin molecule, J. Biochem., 68, 665, 1970.
- Hatano, S. and Ohnuma, J., Purification and characterization of myosin A from the myxomycete plasmodium, Biochim. Biophys. Acta, 205, 110, 1970.
- Barany, M., ATPase of myosin correlated with speed of muscle shortening, J. Gen. Physiol., 50, 197, 1967.
- 157a. Yamaguchi, M., Miyazawa, Y., and Sekine, T., Preparation and properties of smooth muscle myosin from horse esophagus, Biochim. Biophys. Acta, 216, 411, 1970.
- Kaminer, B., Synthetic myosin filaments from vertebrate smooth muscle, J. Mol. Biol., 39, 257, 1969.
- Sobieszek, A. and Small, J. V., Filaments from purified smooth muscle myosin, Cold Spring Harbor Symp. Quant. Biol., 37, 109, 1973.
- Lowy, J. and Small, J. V., The organization of myosin and actin in vertebrate smooth muscle, Nature. 227, 46, 160. 1970.
- Rice, R. V., McManus, G. M., Devine, C. E., and Somlyo, A. P., Regular organization of thick filaments in 161. mammalian smooth muscle, Nat. New Biol., 231, 242, 1971.
- Somlyo, A. P., Devine, C. E., and Somlyo, A. V., Thick filaments in unstretched mammalian smooth muscle, Nat. New Biol., 233, 218, 1971.
- Cooke, P. H. and Fay, F. S., Thick myofilaments in contracted and relaxed mammalian smooth muscle cells, Exp. Cell Res., 71, 265, 1972.
- 163a. Shoenberg, C. F., Goodford, P. J., Wolowyk, M. W., and Wootton, G. S., Ionic changes during smooth muscle fixation for electron microscopy, J. Mechanochem. Cell Motility, 2, 69, 1973.
- 163b. Panner, B. J. and Honig, C. R., Locus and state of aggregation of myosin in tissue sections of vertebrate smooth muscle, J. Cell Biol., 44, 52, 1970.
- 163c. Rosenbluth, J., Myosin-like aggregates in trypsin-treated smooth muscle cells, J. Cell Biol., 48, 174, 1971.
- Adelstein, R. S. and Conti, M. A., Phosphorylation of platelet myosin, Ser. Haematol., in press.
- 164a. Adelstein, R. S., Conti, M. A., and Anderson, W., The phosphorylation of platelet myosin, Proc. Natl. Acad. Sci. U.S.A., 70, 3115, 1973.
- 165. Adelstein, R. S., personal communication, 1973.
- Niederman, R. and Pollard, T. D., Assembly of purified human platelet myosin and myosin rod into thick filaments, J. Cell Biol., in press.
- Zucker-Franklin, D., Microfibrils of blood platelets. Their relationship to microtubules and the contractile protein, 167. J. Clin. Invest., 48, 165, 1969.
- Clarke, M. and Spudich, J. A., personal communication.
- Nachmias, V. T., personal communication.
- Hatano, S. and Takahashi, K., Structure of myosin A from the myxomycete plasmodium and its aggregation at low salt concentrations, J. Mechanochem. Cell Motility, 1, 7, 1971.
- Hinssen, H., Synthetic myosin filaments of myxomycete plasmodia, Cytobiologie, 2, 326, 1970.
- Nachmias, V. T. and Ingram, W. C., Actomyosin from Physarum polycephalum. Electron microscopy of myosin enriched preparations, Science, 170, 743, 1970.
- Sekine, T. and Kielley, W. W., The enzymatic properties of N-ethylmaleimide modified myosin, Biochim. Biophys. Acta, 81, 336, 1964.
- Seidel, J. C., Similar effects on enzymic activity due to chemical modification of either of two sulfhydryl groups of myosin, Biochim. Biophys. Acta, 180, 216, 1969.
- Yen, L.-F. and Shih, T.-C., The presence of a contractile protein in higher plants, Sci. Sin., 14, 601, 1965.
- Yen, L.-F., Han, Y.-S., and Shih, T.-C., Purification of the plant contractile protein and its ATPase properties, Kexue Tongbao, 17, 138, 1966.
- 176a. Bemis, J. A., Bryant, G. M., Arcos, J. C., and Argus, M. F., Swelling and contraction of mitochondrial particles: a reexamination of the existence of a contractile protein extractable with 0.6 M KCl, J. Mol. Biol., 33, 299, 1968.
- Berl, S. and Puszkin, S., Mg²⁺, Ca²⁺ activated adenosine triphosphatase system isolated from mammalian brain, Biochemistry, 9, 2058, 1970.
- Nakajima, H., Some properties of a contractile protein in a myxomycete plasmodium, Protoplasma, 52, 413, 1960.
- Grette, K., The contractile protein of the platelets, Acta Physiol. Scand., 56 (Suppl. 195), 46, 1962.
- Becker, C. G. and Murphy, G. E., Demonstration of contractile protein in endothelium and cells of the heart valves, endocardium, intima, arteriosclerotic plaques, and Aschoff bodies of rheumatic heart disease, Am. J. Pathol., 55, 1, 1969.
- Ohnishi, T., Extraction of actin and myosin like proteins from erythrocyte membranes, J. Biochem., 52, 307, 1962.
- Ohnishi, T., Kawamura, H., Takeo, K., and Watanabe, S., Propriétés des proteines contractiles rassemblants à l'actine et à la myosine extraites des mitochondries du foie, J. Biochem., 56, 273, 1964.
- Lastovica, A. J. and Dingle, A. D., Superprecipitation of an actomyosin-like complex isolated from Naegleria gruberi amoebae, Exp. Cell Res., 66, 337, 1971.
- Vorob'eva, I. A. and Poglazov, B. F., Isolation of contractile protein from the alga, Nitella flexillis, Biofizika (English translation), 8, 475, 1963.

- Ohnishi, T., Kawamura, H., and Tanaka, Y., Die Aktin und Myosin-ahnliche Proteine im Kalbsthymuszellkern. J. Biochem., 56, 6, 1964.
- Poglazov, B. F., Structure and Functions of Contractile Proteins, Academic Press, New York, 1966.
- Hoffmann-Berling, H., Das kontraktile Eiweiss undiferenzierter Zellen, Biochim. Biophys. Acta, 19, 453, 1956.
- Young, L. G. and Nelson, L., Viscometric analysis of the contractile proteins of mammalian spermatozoa, Exp. Cell Res. 51, 34, 1968.
- Pollard, T. D. and Ito, S., Cytoplasmic filaments of Amoeba proteus I. The role of filaments in consistency changes 189. and movement, J. Cell Biol., 46, 267, 1970.
- Gicquaud, D. R. and Couillard, P., Préservation des mouvements dans le cytoplasme démembrané d'Amoeba proteus. II. Mise en évidence de filaments de type myosine dans les préparations, Cytobiologie, 5, 139, 1972.
- Nachmias, V. T., Further electron microscopic studies on fibrillar organization of the ground cytoplasm of Chaos chaos, J. Cell Biol, 38, 40, 1968.
- Rosenbluth, J., Myosin-like tactoids in trypsin treated blood platelets, J. Cell Biol., 50, 900, 1971.
- Bhowmick, D. K., Electron microscopy of Trichamoeba villosa and amoeboid movement, Exp. Cell Res., 45, 570, 192. 1967.
- Cloney, R. A., Cytoplasmic filaments and morphogenesis. Effects of cytochalasin B on contractile epidermal cells, Z. Zellforsch. Mikrosk. Anat., 132, 167, 1972.
- 193a. Rash, J. E., McDonald, T. F., Sachs, H. G., and Ebert, J. D., Muscle-like arrays in a fibroblast line, Nature, 237, 160, 1972.
- 194. Goldman, R. D., The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells, J. Cell Biol., 52, 246, 1972.
- Komnick, H., Stockem, W., and Wohlfarth-Bottermann, K. E., Weitreichende fibrillare Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. VII. Experimentelle Induktion, Kontraktion und Extraktion der Plasmafibrillen von Physarum polycephalum, Z. Zellforsch. Mikrosk. Anat., 109, 420, 1970.
- Allera, A. and Wohlfarth-Bottermann, K. E., Extensive fibrillar protoplasmic differentiations and their significance for protoplasmic streaming. IX. Aggregation states of myosin and conditions for myosin filament formation in the plasmodia of Physarum polycephalum, Cytobiologie, 6, 261, 1972.
- Lowey, S. and Steiner, L. A., An immunochemical approach to the structure of myosin and the thick filament, J. Mol. Biol., 65, 111, 1972.
- Booyse, F. M., Sternberger, L. A., Zschocke, D., and Rafelson, M. E., Ultrastructural localization of contractile 198. protein (thrombosthenin) in human platelets using an unlabeled antibody peroxidase staining technique, J. Histochem. Cytochem., 19, 540, 1971.
- 198a. Holberton, E. J. and Goldspink, G., A radioimmunoassay for myosin in cultured skeletal muscle cells, Exp. Cell Res. 79, 471, 1973.
- Booyse, F. M., Kisieleski, D., and Seeler, R., Possible thrombosthenin defect in Glanzmann's thrombasthenia, Blood, 199. 39, 377, 1972
- 200. Barouch, W. W. and Moos, C., Effect of temperature on actin activation of heavy meromyosin ATPase, Biochim. Biophys. Acta, 234, 183, 1971.
- 201. Margossian, S. S. and Lowey, S., Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin, J. Mol. Biol., 74, 313, 1973.
- 202. Tawada, K. and Oosawa, F., Effect of the H-meromyosin ATP system on F-actin, Biochim. Biophys. Acta, 180, 199, 1969.
- 203. Jockusch, B. M., Brown, D. F., and Rusch, H. P., Synthesis and some properties of an actin-like nuclear protein in the slime mold of Physarum polycephalum, J. Bacteriol., 108, 705, 1971.
- Tilney, L. G. and Cardell, R. R., Jr., Factors controlling the reassembly of the microvillous border of the small intestine of the salamander, J. Cell Biol, 47, 408, 1970.
- 204a Perdue, J. F., The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts, J. Cell Biol., 58, 265, 1973.
- 205. Zucker-Franklin, D., The submembranous fibrils of human blood platelets, J. Cell Biol., 47, 293, 1970.
- 206. Yamada, K. M., Spooner, B. S., and Wessells, N. K., Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol., 49, 614, 1971.
- 207. Buckley, I. K. and Porter, K. R., Cytoplasmic fibrils in living cultured cells, Protoplasma, 64, 349, 1967.
- Guidotti, G., The composition of biological membranes, Arch. Intern. Med., 129, 194, 1972.
- 209. Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., Physical and chemical properties of a protein isolated from red cell membranes, Biochemistry, 9, 50, 1970.
- Clarke, M., Isolation and characterization of a water soluble protein from bovine erythrocyte membranes, Biochem. Biophys. Res. Commun., 45, 1063, 1971.
- Marchesi, V. T. and Steers, E., Selective solubilization of a protein component of the red cell membrane, Science, 159, 203, 1968.
- Rosenthal, A. S., Kregenow, F. M., and Moses, H. L., Some characteristics of a Ca²⁺ dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils, Biochim. Biophys. Acta, 196, 254, 1970.

- 21 2a. Bretscher, M. S., Membrane structure: some general principles, Science, 181, 622, 1973.
- Schmitt, F. O., The molecular biology of neuronal fibrous proteins, Neurosci Res. Program Bull, 6, 113, 1968.
- Bettex-Galland, M., Thrombosthenin electron microscopic studies on its localization in human platelets and some 214 properties of its subunits, Thromb. Diath. Haemorrh., 22, 431, 1969.
- Nachman, R. L., Marcus, A. J., and Safier, L. B., Platelet thrombosthenin. Subcellular localization and function, J. 215. Clin. Invest., 46, 1380, 1967.
- Gröschel-Stewart, U., Jones, B., and Kemp, R., Detection of actomyosin-type protein at the surface of dissociated 216. embryonic chick cells, Nature, 227, 280, 1970.
- Kemp, R. B., Jones, B. M., and Gröschel-Stewart, U., Abolition by myosin and heavy meromyosin of the inhibitory effect of smooth muscle actomyosin antibodies on cell aggregation in vitro, J. Cell Sci., 12, 631, 1973.
- 217a. Becker, C. G. and Nachman, R. L., Contractile proteins of endothelial cells, platelets, and smooth muscle, Am. J. Pathol., 71, 1, 1973.
- Becker, C. G., Demonstration of actomyosin in mesangial cells of the renal glomerulus, Am. J. Pathol., 66, 97, 1972. 218.
- Tanaka, H. and Hatano, S., Extraction of native tropomyosin-like substances from myxomycete plasmodium and the cross reaction between plasmodium F-actin and muscle native tropomyosin, Biochim. Biophys. Acta, 257, 445, 1972.
- Kominz, D. R. and Maruyama, K., Does native tropomyosin bind to myosin? J. Biochem., 61, 269, 1967. 220.
- Pollard, T. D., Eisenberg, E., Korn, E. D., and Kielley, W. W., Inhibition of Mg+ ATPase activity of actin-activated Acanthamoeba myosin by muscle troponin-tropomyosin. Implications for the control of amoeba mobility and muscle contraction, Biochem. Biophys. Res. Commun., 51, 693, 1973.
- 222. Chambers, R. and Chambers, E. L., Exploration into the Nature of the Living Cell, Harvard University Press, Cambridge, 1961, 100.
- Hoffmann-Berling, H., Relaxation of fibroblast cells, in Primitive Motile Systems in Cell Biology, Allen, R. D. and 223. Kamiya, N., Eds., Academic Press, New York, 1964, 365.
- Kinoshita, S., Andoh, B., and Hoffmann-Berling, H., Das Erschlaffungssystem von Fibroblastenzellen, Biochim. Biophys. Acta, 79, 88, 1964.
- Hatano, S., Specific effect of calcium on movement of plasmodial fragments obtained by caffeine treatment, Exp. Cell Res., 61, 199, 1970.
- Jost, J. P. and Rickenberg, H. V., Cyclic AMP, Annu. Rev. Biochem., 40, 741, 1971.
- Bianchi, C. P., The effect of caffeine on radiocalcium movement in frog sartorius, J. Gen. Physiol., 44, 845, 1961.
- Weber, A. and Herz, R., The relationship between caffeine on contracture of intact muscle and the effect of caffeine on motility, J. Gen. Physiol, 52, 750, 1968.
- Chi, Y.-Y. and Francis, D., Cyclic AMP and calcium exchange in a cellular slime mold, J. Cell. Physiol., 77, 169, 229. 1971.
- 230. Taylor, D. L., Condeelis, J. S., Moore, P. L., and Allen, R. D., The contractile basis of amoeboid movement, J. Cell Biol in press.
- Comly, L., Microfilaments in Chaos carolinensis. Membrane association, distribution, and heavy meromyosin binding in the glycerinated cell, J. Cell Biol., 58, 230, 1973.
- 231a. Gail, M. H., Boone, C. W., and Thompson, C. S., A calcium requirement for fibroblast motility and proliferation, Exp. Cell Res., 79, 386, 1973.
- Becker, E. L. and Showell, H. J., The effect of Ca and Mg on the chemotactic responsiveness and spontaneous motility of rabbit polymorphonuclear leukocytes, Z. Immunitaetforsch, 143, 466, 1972.
- Stossel, T. P., Quantitative studies of phagocytosis. Kinetic effects of cations and heat-labile opsonins, J. Cell Biol., 233 58, 346, 1973.
- Hoffmann-Berling, H., Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen, 234. Kontraktionszyklus, Biochim. Biophys. Acta, 27, 247, 1958.
- Amos, W. B., Reversible mechanochemical cycle in the contraction of Vorticella, Nature, 229, 127, 1971. 235.
- Cohen, I. and Cohen, C., A tropomyosin-like protein from platelets, J. Mol. Biol., 68, 383, 1972.
- 236a. Cohen, I., Kaminski, E., and DeVries, A., Actin-linked regulation of the human platelet contractile system, FEBS letters, 34, 315, 1973.
- Cohen, C. and Longley, W., Tropomyosin paracrystals formed by divalent cations, Science, 152, 794, 1966. 237.
- Millward, G. R. and Woods, E. F., Crystals of tropomyosin from various sources, J. Mol. Biol., 52, 585, 1970. 238.
- Woods, E. F., Comparative physicochemical studies on vertebrate tropomyosins, Biochemistry, 8, 4336, 1969. 239.
- Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., Tropomyosin in brain and growing neurones, Nature 240.
- New Biology, 245, 182, 1973. 241.
- 240a. Kaminer, B. and Slonyi, E. Tropomyosin in electric organ of eel and torpedo, J. Cell Biol., 55, 129a, 1972.
- Shida, H., Localization of ionic calcium in Amoeba proteus, Exp. Cell Res., 63, 385, 1970. 242.
- Ettienne, E. M., Control of contractility in Spirostomum by dissociated calcium ions, J. Gen. Physiol., 56, 168, 1970.
- Osborn, D. C., Contractility in the Ciliated Protozoan, Spirostomum ambiguum, Doctoral Dissertation, Michigan 244. State University, East Lansing, 1971.

61

- Lehman, W. J. and Rebhun, L. I., The structural elements responsible for contraction in the ciliate, Spirostomum. Protoplasma, 72, 153, 1971.
- Seravin, L. N., Mechanisms and coordination of cellular locomotion, Adv. Comp. Physiol. Biochem., 4, 37, 1971. 246.
- Braatz, R. and Komnick, H., Histochemischer Nachweis eines calciumpumpenden Systems in Plasmodien von Schleimpilzen, Cytobiologie, 2, 457, 1970.
- Ettienne, E., Subcellular localization of calcium repositories in plasmodia of the acellular slin.c mold Physarum polycephalum, J. Cell Biol., 54, 179, 1972.
- Reinold, M. and Stockem, W., Demonstration of an ATP-sensitive Ca** pumping system in amebae, Cytobiologie, 6, 182, 1972.
- Carasso, N. and Favard, P., Mise en évidence du calcium dans les myonèmes pédonculaires de ciliés péritriches, J. 250. Microsc., 5, 759, 1966.
- Statland, B. E., Heagen, B. M., and White, J. G., Uptake of calcium by platelet relaxing factor, Nature, 223, 521, 1969.
- 252. Robblee, L. S., Shepro, D., and Belamarich, F. A., Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes, J. Gen. Physiol., 61, 462, 1973.
- Lehninger, A. L., The Mitochondrion, W. A. Benjamin, Inc., New York, 1965.
- Cittadini, A., Scarpa, A., and Chance, B., Calcium transport in intact Ehrlich ascites tumor cells, Biochim. Biophys. Acta, 291, 246, 1973.
- 255. Rasmussen, H., Cell communication, calcium ion, and cyclic adenosine monophosphate, Science, 170, 404, 1970.
- Schroeder, T. E., The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs, J. Cell Biol., 53, 419, 1972.
- Rinaldi, R. A. and Baker, W. R., A sliding filament model of amoeboid motion, J. Theor. Biol., 23, 463, 1969.
- Bettex-Galland, M. and Luscher, E. F., Thrombosthenin a contractile protein from thrombocytes. Its extraction from human blood platelets and some of its physical properties, Biochim. Biophys. Acta, 49, 536, 1961.
- 259. Beck, R., Hinssen, H., Komnick, H., Stockem, W., and Wohlfarth-Bottermann, K. E., Extensive fibrillar protoplasmic differentiations and their significance for protoplasmic streaming. V. Contraction, ATPase activity, and fine structure of actomyosin threads from Physarum polycephalum, Cytobiologie, 2, 259, 1970.
- Puszkin, S., Berl, S., Puszkin, E., and Clarke, D. D., Actomyosin-like protein isolated from mammalian brain, **26**0. Science, 161, 120, 1968.
- Allen, R. D., Cooledge, J. W., and Hall, P. J., Streaming in cytoplasm dissociated from the giant amoeba Chaos 261. chaos, Nature, 187, 896, 1960.
- 261a. Tirosh, R., Oplatka, A., and Chet, I., Motility in a "cell sap" of the slime mold Physarum polycephalum, FEBS Letters, 34, 40, 1973.
- Thompson, C. M. and Wolpert, L., Isolation of motile cytoplasm from Amoeba proteus, Exp. Cell Res., 32, 156, 262. 1963.
- Wolpert, L., Thompson, C. M., and O'Neill, C. H., Studies on the isolated membrane and cytoplasm of Amoeba **263**. proteus in relation to amoeboid movement, in Primitive Motile Systems in Cell Biology, Allen, R. D. and Kamiya, N., Eds., Academic Press, New York, 1964, 143.
- Simard-Duquesne, N. and Couillard, P., Amoeboid movement. I. Reactivation of glycerinated models of Amoeba 264. proteus with adenosine triphosphate, Exp. Cell Res., 28, 85, 1962.
- Norberg, B., Amoeboid movements and cytoplasmic fragmentation of glycerinated leukocytes induced by ATP, 265. Exp. Cell Res., 59, 11, 1970.
- 266. Schäffer-Daneel, S., Strukturelle und funktionelle Voraussetzungen für die Bewegung von Amoeba proteus, Z. Zellforsch. Mikrosk. Anat., 78, 441, 1967.
- 267. Schroeder, T. E., The contractile ring I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B, Z. Zellforsch. Microsk. Anat., 109, 431, 1970.
- Schroeder, T. E., Actin in dividing cells. Contractile ring filaments bind heavy meromyosin, Proc. Natl. Acad. Sci. 268. U.S.A., 70, 1688, 1973.
- 268a. Kristensen, B. I., Simonsen, L. O., and Pape, L., Actin-like filaments in Ehrlich ascites tumor cells and their reaction with heavy meromyosin, Virchows Archiv. Abt. B Zellpathol. 13, 103, 1973.
- Mota, M., Karyokinesis without cytokinesis in the grasshopper, Exp. Cell Res., 17, 76, 1959. 269.
- Rappaport, R., Cell division. Direct measurement of maximum tension exerted by furrow of echinoderm eggs, Science, 156, 1241, 1967.
- 271. Baker, P. C., Fine structure and morphogenetic movements in the gastrula of the tree frog, Hyla regilla, J. Cell Biol., 24, 95, 1965.
- Cloney, R. A., Cytoplasmic filaments and cell movements. Epidermal cells during ascidian metamorphosis, J. Ultrastruct. Res., 14, 300, 1966.
- Baker, P. C. and Schroeder, T. E., Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube, Dev. Biol., 15, 432, 1967.
- Wessells, N. K. and Evans, J., Ultrastructural studies of early morphogenesis and cytodifferentiation in the 274. embryonic mammalian pancreas, Dev. Biol., 17, 413, 1968.

- Wrenn, J. T. and Wessells, N. K., An ultrastructural study of lens invagination in the mouse, J. Exp. Zool., 171, 359,
- 276. Cloney, R. A., Cytoplasmic filaments and morphogenesis. The role of the notochord in ascidian metamorphosis, Z. Zellforsch. Mikrosk. Anat., 100, 31, 1969.
- Schroeder, T. E., Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy, J. Embryol. Exp. Morph., 23, 427, 1970.
- Wrenn, J. T. and Wessells, N. K., Cytochalasin B. Effects on microfilaments involved in morphogenesis of estrogen induced glands of oviduct, Proc. Natl. Acad. Sci. U.S.A., 66, 904, 1970.
- Spooner, B. S. and Wessells, N. K., An analysis of salivary gland morphogenesis. Role of cytoplasmic microfilaments and microtubules, Dev. Biol., 27, 38, 1972.
- 280. Allen, R. D., Pattern of birefringence in the giant amoeba, Chaos carolinensis, Exp. Cell Res., 72, 34, 1972.
- Armstrong, P. B. and Parenti, D., Cell sorting in the presence of cytochalasin B, J. Cell. Biol., 55, 542, 1972.
- Becker, E. L., Davis, A. T., Estensen, R. D., and Quie, P. G., Cytochalasin B. IV. Inhibition and stimulation of chemotaxis of rabbit and human polymorphonuclear leukocytes, J. Immunol., 108, 396, 1972.
- Carter, S. B., Effects of cytochalasins on mammalian cells, Nature, 213, 261, 1967.
- Gail, M. H. and Boone, C. W., Cytochalasin effects on Balb/3T3 fibroblasts. Dose dependent reversible alteration of motility and cytoplasmic cleavage, Exp. Cell Res., 68, 226, 1971.
- Legrand, B., Action de certains drogues (chlorotène et cytochalasine B) sur les myonemes du Spirostome (protozoaire cilié), C. R. Acad. Sci. Ser. D, 274, 2197, 1972.
- 286. Maslow, D. E. and Mayhew, E., Cytochalasin B prevents specific sorting of reaggregating embryonic cells, Science, 177, 281, 1972.
- 287. Sanger, J. W., Holtzer, S., and Holtzer, H., Effects of cytochalasin B on muscle cells in tissue culture, Nature, 229, 121, 1971.
- 288. Steinberg, M. S. and Wiseman, L. L., Do morphogenetic tissue rearrangements require active cell movements? The reversible inhibition of cell sorting and tissue spreading by cytochalasin B, J. Cell Biol., 55, 606, 1972.
- 289. Wiklund, R. A. and Allison, A. C., Effects of anesthetics on the mobility of Dictyostelium discoideum, Nat. New Biol., 239, 221, 1972.
- Zigmond, S. H. and Hirsch, J. G., Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, 290. phagocytosis, and glycolysis, Exp. Cell Res., 73, 383, 1972.
- Davis, A. T., Estensen, R., and Quie, P. G., Cytochalasin B. III. Inhibition of human polymorphonuclear leukocyte phagocytosis, Proc. Soc. Exp. Biol. Med., 137, 161, 1971.
- 292. Malawista, S. E., Gee, J. B. L., and Bensch, K. G., Cytochalasin B reversibly inhibits phagocytosis. Functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages, Yale J. Biol. Med., 44, 286, 1971.
- Wagner, R., Rosenberg, M., and Estensen, R., Endocytosis in Chang liver cells. Quantitation by sucrose-3 H uptake and inhibition by cytochalasin B, J. Cell Biol., 50, 804, 1971.
- Bluemink, J. G., Cytokinesis and cytochalasin induced regression in the first cleavage zygote of Xenopus laevis. Z. Zellforsch. Mikrosk. Anat., 121, 102, 1971.
- Bluemink, J. G., Effects of cytochalasin B on surface contractility and cell junction formation during egg cleavage in Xenopus laevis, Cytobiologie, 3, 176, 1971.
- Estensen, R. D., Cytochalasin B. I. Effect on cytokinesis of Novikoff hepatoma cells, Proc. Soc. Exp. Biol. Med., 136, 1256, 1971.
- Hammer, M. G., Sheriden, J. D., and Estensen, R. D., Cytochalasin B. III. Selective inhibition of cytokinesis in Xenopus laevis eggs, Proc. Soc. Exp. Biol. Med., 136, 1158, 1971.
- Krishan, A., Cytochalasin B. Time lapse cinematographic studies on its effects on cytokinesis, J. Cell Biol., 54, 657, 1972.
- 299. Ridler, M. A. C. and Smith, G. F., The response of human cultured lymphocytes to cytochalasin B, J. Cell Sci., 3, 595, 1968.
- Belanger, A. M. and Rustad, R. C., Movements of echinochrome granules during the early development of sea urchin eggs, Nat. New Biol., 239, 81, 1972.
- Bradley, M. O., Microfilaments and cytoplasmic streaming. Inhibition of streaming with cytochalasin B, J. Cell Sci., 12, 327, 1973.
- Franke, W. W., Herth, W., VanDerWoude, W. J., and Morre, D. J., Tubular and filamentous structure in pollen tubes. Possible involvement as guide elements in protoplasmic streaming and vecotial migration of secretory vesicles, Planta (Berl.), 105, 317, 1972.
- McGuire, J. and Moellmann, G., Cytochalasin B. Effects on microfilaments and movement of melanin granules within melanocytes, Science, 175, 642, 1972.
- McGuire, J., Moellmann, G., and McKeon, F., Cytochalasin B and pigment granule translocation. Cytochalasin B reverses and prevents pigment granule dispersion caused by dibutyrylcyclic AMP and theophylline in Rana pipiens melanocytes, J. Cell Biol., 52, 754, 1972.
- Wagner, G., Haupt, W., and Laux, A., Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia, Science, 176, 808, 1972.

- Williamson, R. E., A light microscopic study of the action of cytochalasin B on the cells and isolated cytoplasm of the characeae, J. Cell. Sci., 10, 811, 1972.
- 307. Manasek, F. J., Burnside, B., and Stroman, J., The sensitivity of developing cardiac myofibrils to cytochalasin B, Proc. Natl. Acad. Sci. U.S.A., 69, 308, 1972.
- Auersberg, N., Microfilaments in epithelial morphogenesis, J. Cell Biol., 52, 206, 1972.
- Linville, G. P. and Shepard, T. H., Neural tube closure defects caused by cytochalasin B, Nat. New Biol., 236, 246, 1972.
- Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., Microfilaments in cellular and developmental processes, Science, 171, 135, 1971.
- Carter, S. B., The cytochalasins as research tools in cytology, Endeavour, 31, 77, 1972.
- Spudich, J. A. and Lin, S., Cytochalasin B. Its interaction with actin and actomyosin from muscle, Proc. Natl. Acad. Sci. U.S.A., 69, 442, 1972.
- Spudich, J. A., Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symp. Quant. Biol., 37, 585, 1973.
- Forer, A., Emmersen, J., and Behnke, O., Cytochalasin B. Does it affect actin-like filaments? Science, 175, 774,
- Sanger, J. W. and Holtzer, H., Cytochalasin B. Effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis, Proc. Natl. Acad. Sci. U.S.A., 69, 253, 1972.
- Crawford, B., Cloney, R. A., and Cohn, R. D., Cloned pigmented retinal cells. The effects of cytochalasin B on ultrastructure and behavior, Z. Zellforsch. Mikrosk. Anat., 13, 135, 1972.
- Orci, L., Gabbay, K. H., and Malaisse, W. J., Pancreatic beta-cell web. Its possible role in insulin secretion, Science, 175, 1128, 1972.
- 318. Pratley, J. N. and McQuillan, N. K., The role of microfilaments in frog skin ion transport, J. Cell Biol., 56, 850, 1973.
- 319. Shepro, D., Belamarich, F. A., Robblee, L., and Chao, F. C., Antimotility effect of cytochalasin B observed in mammalian clot retraction, J. Cell Biol., 47, 544, 1970.
- Estensen, R. D. and Plagemann, P. G. W., Cytochalasin B. Inhibition of glucose and glucoseamine transport, Proc. Natl. Acad. Sci. U.S.A., 69, 1430, 1972.
- Kletzien, R. F. and Perdue, J. F., The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B, J. Biol. Chem., 248, 711, 1973.
- Mizel, S. and Wilson, L., Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B, J. Biol. 322. Chem., 247, 4102, 1972.
- 323. Kletzien, R. A., Perdue, J. F., and Springer, A., Cytochalasins A and B. Inhibition of sugar uptake in cultured cells, J. Biol. Chem., 247, 2964, 1972.
- Mizel, S. B., Differential effects of cytochalasin B on the two possible modes of 2-deoxyglucose transport in HeLa cells, Nat. New Biol., 243, 125, 1973.
- 325. Sanger, J. W. and Holtzer, H., Cytochalasin B. Effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis, Proc. Natl. Acad. Sci. U.S.A., 69, 253, 1972.
- 326. Zigmond, S. H. and Hirsch, J. G., Cytochalasin B. Inhibition of D-2-deoxyglucose transport into leukocytes and fibroblasts, Science, 176, 1432, 1972.
- Plagemann, P. G. W. and Estensen, R. D., Cytochalasin B. VI. Competitive inhibition of nucleoside transport by cultured Novikoff rat hepatoma cells, J. Cell Biol., 55, 179, 1972.
- 327a. Lieberman, M., Manasek, F. J., Sawanobori, T., Johnson, E. A., Cytochalasin B. Its morphological and electrophysiological actions on synthetic strands of cardiac muscle, Dev. Biol., 31, 380, 1973.
- 327b. Schaeffer, H. E., Schaeffer, B. E., and Brick, I., Effects of cytochalasin B on the adhesion and electrophoretic mobility of amphibian gastrula cells, Dev. Biol., 34, 163, 1973.
- 328. Holtzer, H., Sanger, J. W., Ishikawa, H., and Strahs, K., Selected topics in skeletal myogenesis, Cold Spring Harbor Symp. Quant. Biol., 37, 549, 1973.
- Butcher, F. R. and Goldman, R. H., Effect of cytochalasin B and colchicine on the stimulation of α -amylase release from rat parotid tissue slices, Biochem. Biophys. Res. Commun., 48, 23, 1972.
- 330. Neve, P., Kételbant-Balasse, P., Willems, C., and Dumont, J. E., Effect of inhibitors of microtubules and microfilaments on dog thyroid slices in vitro, Exp. Cell Res., 74, 227, 1972.
- Schofield, J. G., Cytochalasin B and release of growth hormone, Nat. New Biol., 234, 215, 1971.
- Thao, N. B., Wooten, G. F., Axelrod, J., and Kopin, I. J., Inhibition of release of dopamine-β-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin B, Proc. Natl. Acad. Sci. U.S.A., 69, 520, 1972.
- Williams, J. A. and Wolff, J., Cytochalasin B inhibits thyroid secretion, Biochem. Biophys. Res. Commun., 44, 422,
- Davies, P., Allison, A. C., Fox, R. I., Polyzonis, M., and Haswell, A. D., The exocytosis of polymorphonuclear leukocyte lysosomal enzymes induced by cytochalasin B, Biochem. J., 128, 78P, 1972.
- Hawkins, D., Neutrophilic leukocytes in immunologic reactions in vitro. Effect of cytochalasin B, J. Immunol., 110, 294, 1973.

- Pollack, R. and Goldman, R., Synthesis of infectious poliovirus in BSC-1 monkey cells enucleated with cytochalasin B, Science, 179, 915, 1973.
- Miranda, A. F. and Godman, G. C., The effects of cytochalasin D on differentiating muscle in culture. Tissue Cell. 5.
- Cohn, R. H., Banerjee, S. D., Shelton, E. R., and Bernfield, M. R., Cytochalasin B. Lack of effect on mucopolysaccharide synthesis and selective alterations in precursor uptake, Proc. Natl. Acad. Sci. U.S.A., 69, 2865, 1972.
- 339. Banks, P., Mayor, D., and Mraz, P., Cytochalasin B and the intra-axonal movement of noradrenaline storage vesicles, Brain Res., 49, 417, 1973.
- Butcher, F. R. and Perdue, J. F., Cytochalasin B. Effect on hormone mediated responses in cultured ceils, J. Cell Biol., 56, 857, 1973.
- Moskalewski, S., Sawicki, W., Gabara, B., and Koporowski, H., Crystalloid formation in unfertilized mouse ova 341. under influence of cytochalasin B, J. Exp. Zool., 180, 1, 1972.
- Yoshinaga, M., Yoshinaga, A., and Waksman, B. H., Regulation of lymphocyte responses in vitro. Potentiation and inhibition of rat lymphocyte responses to antigen and mitogens by cytochalasin B, Proc. Natl. Acad. Sci. U.S.A., 69, 3251, 1972,
- Delaat, S. W., Luchtel, D., and Bluemink, J. G., The action of cytochalasin B during egg cleavage in Xenopus laevis. 343. Dependence on cell membrane permeability, Dev. Biol., 31, 163, 1973.
- Binder, M., Kiechel, J. R., and Tamm, C., Zur Biogenese des Antibioticums Phomin. 1 Teil. Die Grundbausteine, Helv. Chim. Acta, 53, 1797, 1970.
- 345. Lin, S. and Spudich, J. A., Synthesis of tritiated cytochalasin B and properties of its cellular receptors, Fed. Proc., 32, 476a, 1973.
- 346. Tannenbaum, S. W., personal communication, 1972.
- Puszkin, E., Puszkin, S., Lo, L. W., and Tannenbaum, S. W., Binding of cytochalasin D to platelet and muscle myosin, J. Biol. Chem., in press.
- Oplatka, A. and Tirosh, R., Active streaming in actomyosin solutions, Biochim. Biophys. Acta, 305, 684, 1973. 348.
- Smith, E. L., Evolution of enzymes, in The Enzymes, Vol. 3, No. 2, Ed., Bayer, P.D., Academic Press, New York, 1970, 267.